1 □ Skeletal System (Part 2)
 - Blood and nerve supply of the bone
 - Bone formation
 - Bone growth
2 □ Blood supply to the bone
 Figure 6.5 - page 167
 - Nutrient artery/vein
 - Enters the bone through nutrient foramen
 - Supplies inner part of compact bone tissue and red marrow up to the epiphyseal plate
 - Metaphyseal arteries/veins
 - Supplies the red bone marrow and bone tissue of the metaphysis
 - Epiphyseal arteries/veins
 - Supplies the red bone marrow and bone tissue of the epiphysis
3 □ Nerve supply to bone
 - Accompany the blood vessels that supply bone tissue
 - Periosteum is rich in sensory nerves
 - Is the reason for the extreme pain when you break a bone
4 □ Bone Formation (Ossification)
 - Human embryo skeleton consists of fibrous connective tissue and hyaline cartilage in the shape of the bones that will develop
 - Ossification (also known as Osteogenesis) begins during the sixth or seventh week of embryonic development
 - There are two patterns of ossification
 - Intramembranous ossification
 - Endochondral ossification
5 □ Intramembranous Ossification
 Figure 6.6 - page 169
 - Flat bones of the skull and mandible are formed by this method
 - Proceeds in the following steps
 1 Development of the center of ossification
 2 Calcification
 3 Formation of trabeculae
 4 Development of periosteum
6 □ Endochondral Ossification
 Figure 6.7 - page 171
 - Most bones are formed this way
Proceeds in the following steps
1 Development of the cartilage model
2 Growth of the cartilage model
3 Development of the primary ossification center
4 Development of the secondary ossification center
5 Formation of articular cartilage and the epiphyseal plate

7 Bone Growth - Length
Figure 6.8 - page 172
• Growth occurs on the diaphyseal side of the epiphyseal plate
 – Zone of resting cartilage
 – Zone of proliferating cartilage
 – Zone of hypertrophic cartilage
 – Zone of calcified cartilage
• Eventually epiphyseal plate forms the epiphyseal line and bone stops growing in length

8 Bone Growth - thickness
Figure 6.9 - page 173
• Referred to as appositional growth
 1 Osteoblasts secrete matrix which forms ridges as it forms around blood vessels
 2 Ridges fold and fuse together
 – This space will be the haversian canal
 – Former Periosteum will become the endosteum

9 Bone Growth - thickness
Figure 6.9 - page 173
 3 Osteoblasts in new endosteum form bone matrix
 – Formation of lamellae ‘rings’ moves inward forming new osteon
 4 Osteoblasts in periosteum continue to increase thickness repeating the cycle again when in contact with more blood vessels

10 Factors affecting bone growth
• Dietary intake of vitamins and minerals
 – Calcium, phosphorus, flouride, magnesium, iron and manganese
 – Vitamin C is needed for collagen formation and for differentiation of osteoblasts into osteocytes

11 Factors affecting bone growth (continued)
• Hormones
 – IGFs (insulinlike growth factors)
• Promotes cell division at epiphyseal plate and periosteum
 – hGH (human growth hormone)
 • Stimulates production of IGFs
 – Sex steroids
 • Can cause ‘growth spurts’ through increased osteoblast activity
 • Responsible for shut down of growth at epiphyseal plate