Please begin every answer to a numbered part of this question on a new sheet of paper.

Suppose X_1, X_2, X_3 are iid Bernoulli(p) random variables for $p \in [0,1]$ and write $X = (X_1, X_2, X_3)$. Define the statistics

$$T(X) = X_1 + X_2 + X_3 \quad \text{and} \quad S(X) = \begin{cases} 0 & \text{if } T(X) = 0 \text{ or } T(X) = 1 \\ T(X) & \text{otherwise} \end{cases}.$$

1. Completely specify the conditional distributions of $T \mid S = s$ for $s = 0, 2, 3$. (Give possible values and corresponding conditional probabilities for each of the three distributions.)

2. Completely specify the conditional distributions of $X \mid S = s$ for $s = 0, 2, 3$. (Note that X takes values in $\{0,1\}^3$.)

3. Based on your answer to 2., argue carefully that the statistic $S(X)$ is not sufficient for the parameter p.

4. Evaluate the Fisher Information in S about the parameter p. (Show that this is a ratio of polynomials in p, but you need NOT simplify. In fact, this is less than the Fisher Information in X about p.)

5. Suppose that only $S(X)$ (and not X or $T(X)$) is available for use in inference about p. Find the maximum likelihood estimator of p based on $S(X)$.

6. If a priori $p \sim U(0,1)$ and $S = 0$, write out a ratio of definite integrals that could be evaluated to obtain the posterior (conditional) probability that $p < 0.5$. (You need NOT actually evaluate this ratio, but produce an explicit form that gives the correct number.)

Now suppose that $S_1, S_2, S_3, \ldots, S_n$ are iid with marginal pmf f specified below.

<table>
<thead>
<tr>
<th>s</th>
<th>$f(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3(1-p)^3 + 3(1-p)^2 p</td>
</tr>
<tr>
<td>3</td>
<td>p^3</td>
</tr>
</tbody>
</table>

(Note that $(1-p)^3 + 3(1-p)^2 p$ simplifies slightly to $(1-p)^2 (1+2p)$.)

7. Define the sample mean $\bar{S}_n = \frac{1}{n} \sum_{i=1}^{n} S_i$. For $p = .05$ what is an approximate distribution for $(\bar{S}_{100})^2$? Argue carefully that your approximation is correct.
8. Let
\[n_0 = \text{the number of } S_i \text{ taking the value 0} \]
\[n_2 = \text{the number of } S_i \text{ taking the value 2} \]
\[n_3 = \text{the number of } S_i \text{ taking the value 3} \]
Give a formula for the log-likelihood function based on the \(S_i, L(p) \).

A sample of size \(n = 100 \) produces \(n_0 = 64, n_2 = 29, \) and \(n_3 = 7 \) and a log-likelihood that is plotted below. Further, some numerical analysis can be done to show that

\[L(0.378) \approx -72.331, L'(0.378) \approx 0 \text{ and } L''(0.378) \approx -1011 \]

9. Give an approximate \(p \)-value for testing \(H_0: p = 0.5 \) vs \(H_1: p \neq 0.5 \) based on the information above.

10. Give "Wald" and "LRT" two-sided approximate 90% confidence limits for \(p \) based on the information above.