Stochastic Production Systems

Discrete Part Manufacturing Systems
Queuing Theory
Modeling
Stochastic

• *Random* (specifically, involving a random variable) or *probabilistic* (Merriam-Webster Dictionary)

• Random: According to M-W…
 – Lacking a definite plan, purpose, or pattern
 – Relating to, having, or being elements or events with definite probability of occurrence

• Why stochastic models?
 – Buzacott & Shanthikumar: because of the need to describe:
 • Disturbances: *to disturb* = *to throw into disorder, to make uneasy*
 • Variability: *variable* = *fickle, inconstant, aberrant*
 – Group characteristics may be known but next individual is a mystery
 – Unpredictability!!
Production

• Act or process of producing (manufacturing); the creation of utility; especially: the making of goods available for use

• Discrete Part Manufacturing (B&S)
 – Machines and work stations where operations are carried out on jobs (parts, items, subassemblies and assemblies) to create products that can be delivered to customers
 – Material handling and storage devices
 – Each item processed is distinct (not continuous processes)

• Also Services
 – Service industries account for 70 - 80 % of employment and 60 - 70 % of GDP in U.S.
 – “Job” can be any task to be carried out by a server in order to meet a customer’s need
 – Original context for most queuing models
Systems

• **M-W**: a group of devices or artificial objects or an organization forming a network especially for distributing something or serving a common purpose

• **B&S**: Types of Discrete Part Manufacturing Systems
 – Job Shop: Large scope of products by variety of machines, flexible routings
 – Flow Line: Large volume by simplified material handling, standard sequence of operations
 – Transfer Line: May have synchronized movement of jobs
 – Flexible Machining System: Automated job shop
 – Flexible Assembly System: Automated movement to assembly, inspection and test
 – Cellular System: Each cell has specific capabilities, loose coupling among them
Queue

- **M-W:** A waiting line especially of persons or vehicles
 - Literally, tail (as of a beast)
 - View it as a symptom of inefficiency – the beast within
- In a manufacturing system, queue = inventory
 - waste, expense, not value-added, etc.
- In a service system, queue = poor service
- In a stochastic system, queues are unavoidable!
 - but they can be reduced if disturbances and variability are handled well and/or by adding to the capacity of the system
Performance Measures

• Production volume
 – Dollar value or total quantity per unit time
 – Correct mix of products is also important
 – Traditional criterion for low- and mid-level managers

• Quality
 – Extent to which the product meets customers’ expectations

• Customer service
 – Ability to meet promised delivery

• Cost
 – Test and inspection stations can improve quality
 – In-process inventory can increase volume and customer service
 – Main concern of upper management
Modeling Steps

1. Identify issues
 a) Time scale of decisions: strategic, tactical, operational
 b) Goals, performance measures, targets

2. Learn about the system

3. Choose a modeling approach
 a) Physical
 b) Computer (simulation)
 c) Analytical

4. Develop and test the model

5. Verify and validate the model
 a) Verify: Does it model what we think it models? Is it correct?
 b) Validate: Does it model the real system? Is it accurate?

6. Develop a model interface (decision support system)

7. Experiment with the model

8. Present the results
Analytical vs. Simulation Models

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Analytical</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>Try to include only most important aspects</td>
<td>Can be very complex and detailed (+/-)</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Easier to change but small changes may have big consequences</td>
<td>Hard to change once built</td>
</tr>
<tr>
<td>Data</td>
<td>Needs less</td>
<td>Needs more</td>
</tr>
<tr>
<td>Transparency</td>
<td>Clear to analyst, may be opaque to less well trained</td>
<td>Black box</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Effort to get tractable solution hard to estimate</td>
<td>Effort more “linear” and predictable</td>
</tr>
<tr>
<td>User interface</td>
<td>Needed for both!</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1
Analytical vs. Simulation: Summary

• Both are important!
 – Use simulation to validate analytical approximations
 – Use analysis to determine where to focus simulation effort

• For stochastic systems, both will be descriptive not prescriptive
 – Analytical models usually easier to combine with optimization
 – Ideal: closed form expression for performance in terms of parameter(s) – can use calculus or search algorithm to optimize
 – Simulation-based optimization is a growing field

• What is the purpose of the model?
 – Understanding: Gain insight into how variable affects performance
 – Teaching: Help managers/workers understand what factors affect performance
 – Improvement: Explore changes in parameters and rules
 – Optimization: Find an optimal combination of parameters
 – Decision Making: How to design and/or operate the system
 • Discriminate effects of alternatives
 • Project their impact over time