MATH 373: HOMEWORK 3
“LINEAR SYSTEMS”
FALL 2013

NOTE: For each homework assignment observe the following guidelines:

- Include a cover page.
- Always clearly label all plots (title, x-label, y-label, and legend).
- Use the subplot command when comparing 2 or more plots to make comparisons easier and to save paper.

1. Let B be a 4×4 matrix to which we apply the following operations:
 - double column 1,
 - halve row 3,
 - add row 3 to row 1,
 - interchange columns 1 and 4,
 - subtract row 2 from each of the other rows,
 - replace column 4 by column 3,
 - delete column 1 (so that the column dimension is reduced by 1).

 (a) Write the results as a product of eight matrices.
 (b) Write it again as a product ABC (same B) of three matrices.

2. Find the LU factorization of A and use it to solve $Ax = b$ for the following linear system: (Show EACH step in the construction of L and U, as well as each step in the forward and backward substitution.)

 \[
 A = \begin{pmatrix}
 4 & 1 & 0 & 0 \\
 1 & 4 & 1 & 0 \\
 0 & 1 & 4 & 1 \\
 0 & 0 & 1 & 4
 \end{pmatrix}, \quad b = \begin{pmatrix}
 3 \\
 -2 \\
 2 \\
 -3
 \end{pmatrix}.
 \]

3. Consider the following linear system

 \[Ax = b,\]

 where A is the following matrix

 \[
 A = \begin{pmatrix}
 0 & 1 & 4 & 5 \\
 2 & 0 & 2 & 4 \\
 2 & 4 & 0 & 1 \\
 1 & -3 & -5 & 0
 \end{pmatrix}.
 \]
(a) Using the partial pivoting strategy, determine the P, L, U decomposition of the matrix A, such that $PA = LU$. (Show EACH STEP in the decomposition.)

(b) Use the P, L, U decomposition found in (a) to find the solution to $Ax = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix}$.

(Show ALL relevant steps).

(c) Use the P, L, U decomposition found in (a) to find the solution to $Ax = \begin{pmatrix} 0 \\ 1 \\ 5 \\ 2 \end{pmatrix}$.

(Show ALL relevant steps).

4. **SOURCE CODE:**

Write the following functions in MATLAB:

- $y = \text{ForwardSubs}(L,b)$ – forward substitution
- $x = \text{BackwardSubs}(U,y)$ – backwards substitution
- $[L,U] = \text{LU}(A)$ – LU decomposition (no pivoting)
- $[P,L,U] = \text{PLU}(A)$ – LU decomposition with partial pivoting

5. Use the above source code to solve Problem 2 and verify that your code and your by-hand calculations agree.

6. Use the above source code to solve Problem 3 and verify that your code and your by-hand calculations agree.