4. Normal Theory Inference

![Graph of normal distribution with mean 0 and variance 1]

Defn 4.1: A random variable Y with density function

$$f(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(y-\mu)^2}$$

is said to have a normal (Gaussian) distribution with

$$E(Y) = \mu \quad \text{and} \quad Var(Y) = \sigma^2.$$

We will use the notation

$$Y \sim N(\mu, \sigma^2)$$

Suppose Z has a normal distribution with $E(Z) = 0$ and $Var(Z) = 1$, i.e.,

$$Z \sim N(0, 1),$$

then Z is said to have a standard normal distribution.

Defn 4.2: Suppose $Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_m \end{bmatrix}$ is a random vector whose elements are independently distributed standard normal random variables. For any $m \times n$ matrix A, we say that

$$Y = \mu + A^TZ$$

has a multivariate normal distribution with mean vector

$$E(Y) = E(\mu + A^TZ)$$

$$= \mu + A^TE(Z)$$

$$= \mu + A^T0 = \mu$$

and variance-covariance matrix

$$Var(Y) = A^TVar(Z)A$$

$$= A^TA \equiv \Sigma$$

We will use the notation

$$Y \sim N(\mu, \Sigma)$$

When Σ is positive definite, the joint density function is

$$f(y) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} e^{-\frac{1}{2}(y-\mu)^T\Sigma^{-1}(y-\mu)}$$
The multivariate normal distribution has many useful properties:

Result 4.1 Normality is preserved under linear transformations:

If \(Y \sim N(\mu, \Sigma) \), then

\[
W = c + BY \sim N(c + B\mu, B\Sigma B^T)
\]

for any non-random \(c \) and \(B \).

Proof: By Defn 4.1, \(Y = \mu + A^T Z \) where \(A^T A = \Sigma \). Then,

\[
W = c + BY = c + B(\mu + A^T Z) = (c + B\mu) + B\Sigma B^T
\]

which satisfies Defn 4.1. with

\[
\text{Var}(W) = B\Sigma B^T
\]

Result 4.2 Suppose

\[
Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)
\]

then

\[
Y_1 \sim N(\mu_1, \Sigma_{11})
\]

Proof: Note that \(Y_1 = \begin{pmatrix} 1 & 0 \end{pmatrix} Y \) and apply Result 4.1.

Note: This result applies to any subset of the elements of \(Y \) because you can move that subset to the top of the vector by multiplying \(Y \) by an appropriate matrix of zeros and ones.

Example 4.1. Suppose

\[
Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} \sim N\left(\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & 1 & -1 \\ 1 & 3 & -3 \\ 2 & -1 & 9 \end{pmatrix} \right)
\]

then

\[
Y_1 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} Y \sim N(1, 4)
\]

\[
Y_2 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} Y \sim N(-3, 3)
\]

\[
Y_3 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} Y \sim N(2, 9)
\]

\[
\begin{pmatrix} Y_1 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} Y \sim N\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix} \right)
\]

\[\uparrow \quad \uparrow \quad \uparrow\]

Call this matrix \(B \mu + B\Sigma B^T \)
Comment: If $Y_1 \sim N(\mu_1, \Sigma_1)$ and $Y_2 \sim N(\mu_2, \Sigma_2)$, it is not always true that $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ has a normal distribution.

Result 4.3: If Y_1 and Y_2 are independent random vectors such that

$Y_1 \sim N(\mu_1, \Sigma_1)$

and

$Y_2 \sim N(\mu_2, \Sigma_2)$

then

$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \right)$

Proof: Since $Y_1 \sim N(\mu_1, \Sigma_1)$, we have from Definition 4.2 that

$Y_1 = \mu_1 + A^T_1 Z_1$

where $A^T_1 A_1 = \Sigma_1$ and the elements of Z_1 are independent standard normal random variables.

A similar result, $Y_2 = \mu_2 + A^T_2 Z_2$, is true for Y_2.

Since Y_1 and Y_2 are independent, it follows that Z_1 and Z_2 are independent. Then

$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \mu_1 + A^T_1 Z_1 \\ \mu_2 + A^T_2 Z_2 \end{bmatrix}$

$= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} P^T_1 & 0 \\ 0 & P^T_2 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$

satisfies Defn 4.2.

Result 4.4 If $Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_k \end{bmatrix}$ is a random vector with a multivariate normal distribution, then Y_1, Y_2, \ldots, Y_k are independent if and only if $Cov(Y_i, Y_j) = 0$ for all $i \neq j$.

Comments:

(i) If Y_i is independent of Y_j, then $Cov(Y_i, Y_j) = 0$.

(ii) When $Y = (Y_1, \ldots, Y_n)^T$ has a multivariate normal distribution, Y_i uncorrelated with Y_j implies Y_i is independent of Y_j. This is usually not true for other distributions.
Result 4.5 If
\[
\begin{pmatrix} Y \\ X \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}, \begin{pmatrix} \Sigma_{YY} & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_{XX} \end{pmatrix} \right)
\]
with a positive definite covariance matrix, the conditional distribution of \(Y \) given the value of \(X \) is a normal distribution with mean vector
\[
E(Y|X) = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (X - \mu_X)
\]
and positive definite covariance matrix
\[
V(Y|X) = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}
\]

\[
\text{note that this does not depend on the value of } X
\]

Quadratic forms: \(Y^T A Y \)
- Sums of squares in ANOVA
- Chi-square tests
- F-tests
- Estimation of variances

Some useful information about the distribution of quadratic forms is summarized in the following results.

Result 4.6a If \(Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \) is a random vector with
\[
E(Y) = \mu \quad \text{and} \quad \text{Var}(Y) = \Sigma
\]
and \(A \) is an \(n \times n \) non-random matrix, then
\[
E(Y^T A Y) = \mu^T A \mu + \text{tr}(A \Sigma)
\]

Result 4.6b If \(Y \sim N(\mu, \Sigma) \) and \(A \) is a symmetric matrix, then
\[
\text{var}(Y^T A Y) = 4 \mu^T A \Sigma A \mu + 2 \text{tr}(A \Sigma A \Sigma)
\]

Proof: (a) Note that the definition of a covariance matrix implies that \(\text{Var}(Y) = E(Y Y^T) - \mu \mu^T \), where \(\mu = E(Y) \).

Then,
\[
E(Y^T A Y) = E(\text{tr}(Y^T A Y)) = E(\text{tr}(A Y Y^T)) = \text{tr}(E(A Y Y^T)) = \text{tr}(AE(Y Y^T)) = \text{tr}(A \text{Var}(Y) + \mu \mu^T) = \text{tr}(A \Sigma + A \mu \mu^T) = \text{tr}(A \Sigma) + \text{tr}(A \mu \mu^T)
\]

(b) See Searle(1971, page 57).
Example 4.2 Consider a Gauss-Markov model with

\[E(Y) = X\beta \text{ and } Var(Y) = \sigma^2 I. \]

Let

\[b = (X^TX)^{-1}X^TY \]

be any solution to the normal equations.

Since \(E(Y) = X\beta \) is estimable, the unique OLS estimator is

\[\hat{Y} = Xb = X(X^TX)^{-1}X^TY \]
\[= PXY \]

\[283 \]

The residual vector is

\[e = Y - \hat{Y} = (I - P_X)Y \]

and the sum of squared residuals, also called the error sum of squares, is

\[SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \]
\[= \sum_{i=1}^{n} e_i^2 \]
\[= e^Te \]
\[= [(I - P_X)Y]^T(I - P_X)Y \]
\[= Y^T(I - P_X)^T(I - P_X)Y \]
\[= Y^T(I - P_X)(I - P_X)Y \]
\[= Y^T(I - P_X)Y \]

\[284 \]

From Result 4.6

\[E(SSE) = E(Y^T(I - P_X)Y) \]
\[= \beta^TX^T(I - P_X)X\beta \]
\[+ tr((I - P_X)\sigma^2 I) \]
\[= 0 + \sigma^2 tr(I - P_X) \]
\[= \sigma^2 [tr(I) - tr(P_X)] \]
\[= \sigma^2 [n - rank(P_X)] \]
\[= \sigma^2 [n - rank(X)] \]

Consequently,

\[\hat{\sigma}^2 = \frac{SSE}{n - rank(X)} \]

is an unbiased estimator for \(\sigma^2 \) (provided that \(rank(X) < n \)).

\[285 \]

Chi-square Distributions

Defn 4.3 Let \(Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_n \end{bmatrix} \sim N(0, I) \), i.e., the elements of \(Z \) are \(n \) independent standard normal random variables. The distribution of

\[W = Z^TZ = \sum_{i=1}^{n} Z_i^2 \]

is called the central chi-square distribution with \(n \) degrees of freedom.

We will use the notation

\[W \sim \chi^2(n) \]

\[286 \]
Moments:

If $W \sim \chi^2_n$, then

$$E(W) = n$$

$$Var(W) = 2n$$
Defn 4.4: Let \(Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mu, I) \) i.e., the elements of \(Y \) are independent normal random variables with \(Y_i \sim N(\mu_i, 1) \). The distribution of the random variable

\[
W = Y^T Y = \sum_{i=1}^{n} Y_i^2
\]

is called a noncentral chi-square distribution with \(n \) degrees of freedom and noncentrality parameter

\[
\delta^2 = \mu^T \mu = \sum_{i=1}^{n} \mu_i^2
\]

We will use the notation

\[
W \sim \chi_n^2(\delta^2)
\]

Moments:

If \(W \sim \chi_n^2(\delta^2) \) then

\[
E(W) = n + \delta^2
\]

\[
Var(W) = 2n + 4\delta^2
\]

Defn 4.5: If \(W_1 \sim \chi_{n_1}^2 \) and \(W_2 \sim \chi_{n_2}^2 \) and \(W_1 \) and \(W_2 \) are independent, then the distribution of

\[
F = \frac{W_1/n_1}{W_2/n_2}
\]

is called the central \(F \) distribution with \(n_1 \) and \(n_2 \) degrees of freedom.

We will use the notation

\[
F \sim F_{n_1, n_2}
\]

Central moments:

\[
E(F) = \frac{n_2}{n_2 - 2} \quad \text{for } n_2 > 2
\]

\[
Var(F) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)} \quad \text{for } n_2 > 4
\]
Densities for Central F Distributions

\[f(x;n) \]

![Graph of F Distributions](image)

\(df \)

Defn 4.6: If \(W_1 \sim \chi^2_{n_1}(\delta_1^2) \) and \(W_2 \sim \chi^2_{n_2}(\delta_2^2) \) and \(W_1 \) and \(W_2 \) are independent, then the distribution of

\[F = \frac{W_1/n_1}{W_2/n_2} \]

is called a noncentral F distribution with \(n_1 \) and \(n_2 \) degrees of freedom and noncentrality parameter \(\delta_1^2 \).

We will use the notation

\[F \sim F_{n_1,n_2}(\delta_1^2) \]
Moments:

\[E(F) = \frac{n_2(n_1 + \delta_1^2)}{(n_2 - 2)n_1} \quad \text{for } n_2 > 2 \]

\[Var(F) = \frac{2n_2^2[(n_1 + \delta_1^2)^2 + (n_2 - 2)(n_1 + 2\delta_1^2)]}{n_1(n_2 - 2)^2(n_2 - 4)} \]

\[\quad \text{for } n_2 > 4 \]

```r
# This code is stored in the file: fdemnc.scc

# dfn; density of non-central F

# ----------------------------------
# dfn; density of non-central F
# -----------------------------
# Input : x  can be a scalar or a vector
# v  df for numerator
# w  df for denominator
# deltas non-centrality parameter
# (e.g.) dfn(x,5,20,1.5) when x is a
# scalar,
# supply(x,dfn,5,20,1.5) when x
# is a vector
# Output: evaluate density curve of the
# non-central F distribution
# #########################################################################

dfn <- function(x,v,w,delta) {
  sum <- 1
  term <- 1
  p <- ((delta+v+w)/(v+w))
  nt <- 100
  for (j in 1:nt) {
    term <- term*exp((v+w+2*j-1))/((v+2*(j-1))*j)
    sum <- sum + term
  }
  dfn.x <- exp(-delta)*sum*df(x,v,w)
  dfn.x
}
```
dnf.slow is aimed to show vectorized calculations and use of a loop avoidance function (`supply`). Vectorized calculations operate on entire vectors rather than on individual components in sequence.

```r
dnf.slow <- function(x,v,w,delta) {
    prod. seq <- function(a,b) prod(seq(b,b+2*(a-1),2))
    j <- 1:100
    p <- ((delta+vtx)/(v+vtx))
    numer <- supply(j, prod. seq, v+w, simplify=T)
    denom <- gamma(j+1)*supply(j, prod. seq, v, simplify=T)
    k <- 1 + sum( p[j]*(numer / denom )
    f.x <- k*exp(-delta)*df(x,v,w)
    return(f.x)
}
```

```r
n.f.density.plot <- function(v,w,delta) {
    x <- seq(.001, 0.5, length=60)
    cf.x <- df(x,v,w)
    nf.x <- supply(x,dnf,v,w,delta)

    # For the main title,
    main1.txt <- "Central and Noncentral F Densities \n with" df.txt <- paste(paste("df",paste(denom,v",",sep=""),
    w,sep="")),"\n","sep="")
    main2.txt <- paste(df.txt,
    "\nand noncentrality parameter \n")
    main2.txt <- paste(main2.txt,delta)
    main.txt <- paste(main1.txt,main2.txt)
}
```

```r
# The following commands can be applied to obtain a single density value
# dnf (0.5, 0.5, 20, 1.5)
# dnf.slow(0.5, 0.5, 20, 1.5)
# The following commands are used to evaluate the noncentral F density for a vector of values
# x <- seq(1,10,1)
# f.x1 <- supply(x,dnf,5,20,1.5)
# f.x2 <- supply(x,dnf.slow,5,20,1.5)
# You will notice that the performance of dnf is better than that of dnf.slow.
# The results should be the same. In this case using a loop is better than using vectorized calculations, but is usually more efficient to use vectorized computations.
```

```
# create the axes, lines, and legends.
plot(0.5, c(0,0.8), type="n",xlab="x", ylab="f(x,v,w)"
ntext(main.txt, side=3,line=2.2)
lines(x, cf.x, type="l",lty=1)
lines(x, nf.x, type="l",lty=2)
legend(x=1.6, y=0.64,legend="Central F ",col=0.9,
lty =1, bty = "n") legend(x=1.6, y=0.56,legend="Noncentral F",col=0.9,
lty =3, bty = "n")
```
Reminder:

If Y_1, Y_2, \ldots, Y_k are independent random vectors, then

$$f_1(Y_1), f_2(Y_2), \ldots, f_k(Y_k)$$

are distributed independently.

Here $f_i(Y_i)$ indicates that $f_i(\cdot)$ is a function only of Y_i and not a function of any other Y_j, $j \neq i$.

These could be either real valued or vector valued functions.

Result 4.7: Let A be an $n \times n$ symmetric matrix with rank(A) = k, and let

$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mu, \Sigma)$$

where Σ is an $n \times n$ symmetric positive definite matrix. If

$$A\Sigma$$

is idempotent

then

$$Y^T A Y \sim \chi^2_k(\mu^T A \mu)$$

In addition, if $A\mu = 0$ then

$$Y^T A Y \sim \chi^2_k$$

Proof: We will show that the definition of a noncentral chi-square random variable (Defn 4.4) is satisfied by showing that

$$Y^T A Y = Z^T Z$$

for a normal random vector

$$Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_k \end{bmatrix} \quad \text{with} \quad \text{Var}(Z) = I_{k \times k}.$$

Step 1: Since $A\Sigma$ is idempotent we have

$$A\Sigma = A\Sigma A\Sigma$$

Step 2: Since Σ is positive definite, then Σ^{-1} exists and we have

$$A\Sigma \Sigma^{-1} = A\Sigma A\Sigma \Sigma^{-1}$$

$$\Rightarrow \quad A = A\Sigma A$$

$$\Rightarrow \quad A = A^T \Sigma A$$
Step 3: For any vector \(\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \) we have
\[
x^T A \mathbf{x} = x^T A^T \Sigma A \mathbf{x} \geq 0
\]
because \(\Sigma \) is positive definite. Hence, \(A \) is non-negative definite and symmetric.

Step 4: From the spectral decomposition of \(A \) (Result 1.12) we have
\[
A = \sum_{j=1}^{k} \theta_j N_{j}^T = V D V^T
\]
where
\[
\theta_1 \geq \theta_2 \geq \cdots \geq \theta_k > 0
\]
are the positive eigenvalues of \(A \),
\[
D = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_k \end{bmatrix}
\]
and the columns of \(V \) are \(v_1, v_2, \cdots, v_k \), the eigenvectors corresponding to the positive eigenvalues of \(A \).

The other \(n - k \) eigenvalues of \(A \) are zero because \(\text{rank}(A) = k \).

Step 5: Define
\[
B = V \begin{bmatrix} \frac{1}{\sqrt{\theta_1}} \\ \cdots \\ \frac{1}{\sqrt{\theta_k}} \end{bmatrix}
\]
\[
= V D^{-1/2}
\]
Since \(V^T V = I \), we have
\[
B^T A B = D^{-1/2} V^T V D V^T D^{-1/2}
\]
\[
= D^{-1/2} D D^{-1/2}
\]
\[
= I_{k \times k}
\]
Then, since \(A = A^T \Sigma A \) we have
\[
I = B^T A B = B^T A^T \Sigma A B
\]

Step 6: Define \(Z = B^T A \mathbf{y} \), then
\[
\text{Var}(Z) = B^T A^T \Sigma A B = I_{k \times k}
\]
and
\[
Z \sim N(B^T A \mu, I)
\]

Step 7:
\[
Z^T Z = (B^T A \mathbf{y})^T (B^T A \mathbf{y})
\]
\[
= Y^T A^T B B^T A \mathbf{y}
\]
\[
= Y^T A \mathbf{y}
\]
because
\[
A^T B B^T A = A B B^T A
\]
\[
= V D V^T V D^{-1/2} D^{-1/2} V^T V D V^T
\]
\[
= V D V^T V D V^T
\]
\[
= V D V^T
\]
\[
= A
\]

Finally, since
\[
Z \sim N(B^T A \mu, I)
\]
we have
\[
Z^T Z \sim \chi^2_k(\delta^2)
\]
from Defn 4.4, where
\[
\delta^2 = (B^T A \mu)^T (B^T A \mu)
\]
\[
= \mu^T A^T B B^T A \mu
\]
\[
= \mu^T A \mu
\]
Example 4.3 For the Gauss-Markov model with
\[E(Y) = X\beta \quad \text{and} \quad Var(Y) = \sigma^2 I \]
include the assumption that
\[Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(X\beta, \sigma^2 I). \]
For any solution
\[b = (X^T X)^{-1} X^T Y \]
to the normal equations, the OLS estimator for \(X\beta \) is
\[\hat{Y} = Xb = X(X^T X)^{-1} X^T Y = P_X Y \]
and the residual vector is
\[e = Y - \hat{Y} = (I - P_X)Y. \]

The sum of squared residuals is
\[SSE = \sum_{i=1}^{n} e_i^2 = e^T e = Y^T (I - P_X) Y. \]

Use Result 4.7 to obtain the distribution of
\[\frac{SSE}{\sigma^2} = Y^T \left(\frac{1}{\sigma^2} (I - P_X) \right) Y \]
Here
\[\mu = E(Y) = X\beta \]
\[\Sigma = Var(Y) = \sigma^2 I \quad \text{is p.d.} \]
\[A = \frac{1}{\sigma^2} (I - P_X) \quad \text{is symmetric} \]

Note that
\[A\Sigma = \frac{1}{\sigma^2} (I - P_X) \sigma^2 I \]
\[= I - P_X \]
is idempotent, and
\[A\mu = \frac{1}{\sigma^2} (I - P_X) X\beta = 0 \]
Then
\[\frac{SSE}{\sigma^2} \sim \chi^2_{n-k} \]
where
\[\text{rank}(I - P_X) = n - \text{rank}(X) \]
\[= n - k \]

We could also express this as
\[SSE \sim \sigma^2 \chi^2_{n-k} \]

Now consider the “uncorrected” model sum of squares
\[\sum_{i=1}^{n} \hat{Y}_i^2 = \hat{Y}^T \hat{Y} \]
\[= (P_X Y)^T P_X Y \]
\[= Y^T P_X^T P_X Y \]
\[= Y^T P_X Y. \]
Use Result 4.7 to show

\[
\frac{1}{\sigma^2} \sum_{i=1}^{n} \tilde{Y}_i^2 = Y^T \left(\frac{1}{\sigma^2} P_X \right) Y \sim \chi^2_k(\delta^2)
\]

\[
\overset{\nearrow}{\uparrow}
\]

this is A

$k = \text{rank}(X)$

and $\Sigma - \sigma^2 I$

where

\[
\delta^2 = (X\beta)^T \left(\frac{1}{\sigma^2} P_X \right) (X\beta)
\]

\[
= \frac{1}{\sigma^2} \beta^T X^T (P_X X) \beta
\]

\[
\overset{\nearrow}{\downarrow}
\]

this is X

\[
= \frac{1}{\sigma^2} \beta^T X^T X \beta
\]

The next result addresses the independence of several quadratic forms

Result 4.8 Let $Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mu, \Sigma)$

and let A_1, A_2, \ldots, A_p be $n \times n$ symmetric matrices. If

\[
A_i \Sigma A_j = 0 \text{ for all } i \neq j
\]

then

\[
Y^T A_1 Y, Y^T A_2 Y, \ldots, Y^T A_p Y
\]

are independent random variables.

Proof: From Result 4.1

\[
\begin{bmatrix} A_1 Y \\ 1 \\ A_p Y \end{bmatrix} = \begin{bmatrix} A_1 \\ 1 \\ A_p \end{bmatrix} Y
\]

has a multivariate normal distribution, and for $i \neq j$

\[
\text{Cov}(A_i Y, A_j Y) = A_i \Sigma A_j^T
\]

\[
= 0
\]

It follows from Result 4.4 that

$A_1 Y, A_2 Y, \ldots, A_p Y$

are independent random vectors.

Since

\[
Y^T A_i Y = Y^T A_i A_i^T A_i Y
\]

\[
= Y^T A_i^T A_i Y
\]

\[
= (A_i Y)^T A_i^T (A_i Y)
\]

is a function of $A_i Y$ only, it follows that

$Y^T A_1 Y, \ldots, Y^T A_p Y$

are independent random variables.
Example 4.4. Continuing Example 4.3, show that the “uncorrected” model sum of squares

$$n \sum_{i=1}^{n} \hat{Y}_i^2 = Y^T P_X Y$$

and the sum of squared residuals

$$n \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = Y^T (I - P_X) Y$$

are independently distributed for the “normal theory” Gauss-Markov model where

$$Y \sim N(X \beta, \sigma^2 I).$$

Use Result 4.8 with $A_1 = P_X$ and $A_2 = I - P_X$. Note that

$$A_1 \Sigma A_2 = (I - P_X)(\sigma^2 I)P_X$$

$$= \sigma^2 (I - P_X)P_X$$

$$= \sigma^2 (P_X - P_X P_X)$$

$$= \sigma^2 (P_X - P_X)$$

$$= 0$$

Consequently,

$$\frac{1}{\sigma^2} n \sum_{i=1}^{n} \hat{Y}_i^2$$

and

$$\frac{1}{\sigma^2} n \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

are independently distributed.

By Defn 4.6,

$$F = \frac{1}{k \sigma^2} \frac{n \sum_{i=1}^{n} \hat{Y}_i^2}{(n - k) \sigma^2 (n \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2)}$$

uncorrected model

\[\downarrow\]

mean square

$$= \frac{1}{k} \frac{n \sum_{i=1}^{n} \hat{Y}_i^2}{n \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}$$

Residual mean square

$$\sim F_{k, n-k} \left(\frac{1}{\sigma^2} \beta^T X^T X \beta \right)$$

This reduces to a central F distribution with $(k, n-k)$ d.f. when $X \beta = 0$.
Use
\[
F = \frac{\frac{1}{k} \sum_{i=1}^{n} \hat{Y}_i^2}{\frac{1}{n-k} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}
\]
to test the null hypothesis
\[H_0 : E(Y) = X\beta = 0\]
against the alternative
\[H_A : E(Y) = X\beta \neq 0\]

Comments

(i) The null hypothesis corresponds to the condition under which \(F \) has a central \(F \) distribution (the noncentrality parameter is zero). In this example
\[
\delta^2 = \frac{1}{\sigma^2} (X\beta)^T (X\beta) = 0
\]
if and only if \(X\beta = 0 \).

(ii) If \(k = \text{rank}(X) \) is the number of columns in \(X \), then
\[H_0 : X\beta = 0\] is equivalent to
\[H_0 : \beta = 0.\]

(iii) If \(k = \text{rank}(X) \) is less than the number of columns in \(X \), then \(X\beta = 0 \) for some \(\beta \neq 0 \) and \(H_0 : X\beta = 0 \) is not equivalent to \(H_0 : \beta = 0 \).

Example 4.4 is a simple illustration of a typical

\[
\sum_{i=1}^{n} Y_i^2 = Y^T Y = Y^T [(I - P_X) + P_X] Y
\]
\[
= Y^T (I - P_X) Y + Y^T P_X Y
\]
\[
\uparrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \uparrow
\]
\[
\text{call this } A_2, \quad \text{call this } A_1
\]
\[
= \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n} \hat{Y}_i^2
\]
\[
\uparrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \uparrow
\]
\[
d.f. = \text{rank}(A_2), \quad d.f. = \text{rank}(A_1)
\]
More generally an uncorrected total sum of squares can be partitioned as
\[\sum_{i=1}^{n} Y_i^2 = Y^T Y = Y^T A_1 Y + Y^T A_2 Y + \cdots + Y^T A_k Y \]
using orthogonal projection matrices
\[A_1 + A_2 + \cdots + A_k = I_{n \times n} \]
where
\[\text{rank}(A_1) + \text{rank}(A_2) + \cdots + \text{rank}(A_k) = n \]

\[Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mu, \sigma^2 I) \]
and let \(A_1, A_2, \ldots, A_k \) be \(n \times n \) symmetric matrices with
\[I = A_1 + A_2 + \cdots + A_k \]
and
\[n = r_1 + r_2 + \cdots + r_k \]
where \(r_i = \text{rank}(A_i) \). Then, for \(i = 1, 2, \ldots, k \)
\[\frac{1}{\sigma^2} Y^T A_i Y \sim \chi^2_{r_i} \left(\frac{1}{\sigma^2} \mu^T A_i \mu \right) \]

and
\[A_i A_j = 0 \quad \text{for any } i \neq j. \]

Since we are dealing with orthogonal projection matrices we also have
\[A_i^T = A_i \quad \text{(symmetry)} \]
\[A_i A_i = A_i \quad \text{(idempotent matrices)} \]

Result 4.9 (Cochran's Theorem)

Let \(Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mu, \sigma^2 I) \)
and let \(A_1, A_2, \ldots, A_k \) be \(n \times n \) symmetric matrices with
\[I = A_1 + A_2 + \cdots + A_k \]
and
\[n = r_1 + r_2 + \cdots + r_k \]
where \(r_i = \text{rank}(A_i) \). Then, for \(i = 1, 2, \ldots, k \)
\[\frac{1}{\sigma^2} Y^T A_i Y \sim \chi^2_{r_i} \left(\frac{1}{\sigma^2} \mu^T A_i \mu \right) \]

and
\[Y^T A_1 Y, Y^T A_2 Y, \cdots, Y^T A_k Y \]
are distributed independently.

Proof: This result follows directly from Result 4.7, Result 4.8 and the following Result 4.10.
Result 4.10 Let A_1, A_2, \ldots, A_k be $n \times n$ symmetric matrices such that

$$A_1 + A_2 + \cdots + A_k = I.$$

Then the following statements are equivalent

(i) $A_iA_j = 0$ for any $i \neq j$

(ii) $A_iA_i = A_i$ for all $i = 1, \ldots, k$

(iii) $\text{rank}(A_1) + \cdots + \text{rank}(A_k) = n$

Proof:

First show that (i) ⇒ (ii)

Since $A_i = I - \sum_{j \neq i} A_j$, we have

$$A_iA_i = A_i(I - \sum_{j \neq i} A_j) = A_i - \sum_{j \neq i} A_iA_j = A_i$$

Now show that (ii) ⇒ (iii)

Since an idempotent matrix has eigenvalues that are either 0 or 1 and the number of non-zero eigenvalues is the rank of the matrix, (ii) implies that $\text{tr}(A_i) = \text{rank}(A_i)$. Then,

$$n = \text{tr}(I) = \text{tr}(A_1 + A_2 + \cdots + A_k) = \text{tr}(A_1) + \text{tr}(A_2) + \cdots + \text{tr}(A_k) = \text{rank}(A_1) + \text{rank}(A_2) + \cdots + \text{rank}(A_k)$$

Finally, show that (iii) ⇒ (i)

Let $r_i = \text{rank}(A_i)$. Since A_i is symmetric, we can apply the spectral decomposition (Result 1.12) to write A_i as

$$A_i = U_i \Delta_i U_i^T$$

where

Δ_i is an $r_i \times r_i$ diagonal matrix containing the non-zero eigenvalues of A_i and

$U_i = [u_{1i} \mid u_{2i} \mid \cdots \mid u_{r_i,i}]$

is an $n \times r_i$ matrix whose columns are the eigenvectors corresponding to the non-zero eigenvalues of A_i.

Then

$$I = A_1 + A_2 + \cdots + A_k = U_1 \Delta_1 U_1^T + \cdots + U_k \Delta_k U_k^T$$

$$= |U_1| \cdots |U_k| \begin{bmatrix} \Delta_1 & \Delta_2 & \cdots & \Delta_k \end{bmatrix} \begin{bmatrix} U_1^T \\ \vdots \\ U_k^T \end{bmatrix}$$

$$= U \begin{bmatrix} \Delta_1 & \cdots & \Delta_k \end{bmatrix} U^T$$

Since $\text{rank}(A_1) + \cdots + \text{rank}(A_k) = n$ and $\text{rank}(A_i)$ is the number of columns in U_i, then $U = |U_1| \cdots |U_k|$ is an $n \times n$ matrix. Furthermore, $\text{rank}(U) = n$ because the identity matrix on the left side of the equal sign has rank n. Then, $U^T U$ is an $n \times n$ matrix of full rank and $(U^T U)^{-1}$ exists, and
\[I = U \begin{bmatrix} \Delta_1 & \cdots & \Delta_k \end{bmatrix} U^T \]

\[\Rightarrow \]

\[U^T U = U^T \begin{bmatrix} \Delta_1 & \cdots & \Delta_k \end{bmatrix} U^T \]

\[\Rightarrow \]

\[(U^T U)^{-1} U^T U = \begin{bmatrix} \Delta_1 & \cdots & \Delta_k \end{bmatrix} U^T U \]

\[\Rightarrow \]

\[I = \begin{bmatrix} \Delta_1 & \cdots & \Delta_k \end{bmatrix} U^T U \]

It follows that

\[
\begin{bmatrix}
\Delta_1^{-1} & \cdots & \Delta_k^{-1}
\end{bmatrix} =
\begin{bmatrix}
U_1^T & U_k^T
\end{bmatrix}
\begin{bmatrix}
U_1 \cdots U_k
\end{bmatrix}
\]

Consequently,

\[U_i^T U_j = 0 \quad \text{for any } i \neq j \]

and

\[A_i A_j = U_i \Delta_i \underline{U_i^T U_j} \Delta_j U_j = 0 \]

\[\uparrow \]

this is a matrix of zeros

for any \(i \neq j \).

References:

Applied Multivariate Statistical Analysis, 4th edition, Prentice Hall (Chapter 4)

Johnson, N. L., Kotz, S. and Balakrishnan, N.

Linear Models for Unbalanced Data, Wiley, New York (Chapters 7 and 8).
