1. Please provide answers to the following questions about checking the assumptions of the single-factor ANOVA model.
 a) Explain what a residual plot is, and give the main reason for examining a residual plot. Be specific.

 b) Sketch a residual plot that indicates some violation of a model assumption. State what assumption appears to be violated and describe a course of action that may correct the problem.

2. Researchers conducted a study of the effects of a potentially toxic compound on weight gain in rats. A total of fifty rats were randomly assigned to five dose groups using a completely randomized, balanced design. The dose groups were defined by the amount of the compound each rat received. The doses considered were 0, 100, 200, 500, and 750 mg/kg body weight. The researchers measured the amount of weight gained (or lost if negative) by each rat during the test period. The weight gain means for each treatment along with the mean square error from the fit of the single-factor analysis of variance model are provided below.

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>750</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Gain Mean (g)</td>
<td>10.40</td>
<td>10.33</td>
<td>8.48</td>
<td>4.43</td>
<td>-4.50</td>
<td>9.63</td>
</tr>
</tbody>
</table>

 a) After seeing the estimated treatment means provided above, one of the researchers remarked, "The mean for the 750 mg/kg dose appears to be significantly less than each of the other means. Is that true?". What method would you use to address this question? Assume that you should keep the probability of one or more type I errors below 0.05. Circle the best answer below.

 ANOVA F-test Bonferroni Dunnett Hsu Tukey Contrast Sum of Squares
2. (continued)

b) Prior to collecting the data, one of the researchers said that there would be evidence of toxicity if any one of the nonzero doses had a mean weight gain that was significantly less than the mean for the 0 dose treatment. If the researchers want to keep the probability of making one or more type I errors below 0.05, what method would be best for testing for toxicity using this criterion? Circle the best answer below.

ANOVA F-test Bonferroni Dunnett Hsu Tukey Linear Combination of Means

ANCOVA F-test Bonferroni Dunnett Hsu Tukey Linear Combination of Means

c) Another researcher said that there would be evidence of toxicity if weight gain tended to decrease as the dose increased. She decided to use Tukey's method for making all pairwise comparisons of treatment means. She obtained the table below by issuing the SAS command lsmeans dose / adjust=Tukey pdiff;

<table>
<thead>
<tr>
<th>i / j</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>0.6412</td>
<td>0.0008</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.6724</td>
<td>0.0010</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.6412</td>
<td>0.6724</td>
<td>0.0415</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.0008</td>
<td>0.0010</td>
<td>0.0415</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Based on this output, list all pairs of means that are significantly different from one another. Again assume that the researchers want to keep the probability of making one or more type I errors below 0.05.

d) A researcher claims that the results of the Tukey analysis prove that the compound is safe (i.e., nontoxic) at low doses but toxic at the higher doses. Explain why you agree or disagree with this claim.

e) Suppose another researcher wants to get simultaneous confidence intervals for the mean weight gains associated with each of the five treatments. The researcher wants all five intervals to contain the parameters they are estimating with simultaneous confidence level 95%. Each of these confidence intervals has the form

\[\text{estimate} \pm t \ast SE(\text{estimate}) \]

Because the data are balanced, the \(t \ast SE(\text{estimate}) \) part will be the same for all intervals. Compute the appropriate value of \(t \ast SE(\text{estimate}) \). Recall that MSE=9.63 for this data.
3. Researchers were interested in studying the effect of temperature and light level on the growth of bacterial colonies on potato leaflets. Bacteria were inoculated onto a total of 48 leaflets. The leaflets were randomly assigned to treatment with one of four temperatures (10, 15, 20, or 25°C) and one of three light levels (A=low, B=medium, or C=high). Four weeks after inoculation, the log of the area of the bacterial colony on each leaflet was measured as the response variable. A completely randomized design was used with four leaflets for each combination of temperature and light intensity. Use the SAS code and output on the last page of your exam to answer the following questions.

a) Were there significant differences among the 12 treatment means? Give an appropriate test statistic, its degrees of freedom, a p-value, and a simple "yes" or "no" for a conclusion.

b) Were there any significant differences among the temperature lsmeans? Give an appropriate test statistic, its degrees of freedom, a p-value, and a simple "yes" or "no" for a conclusion.

c) Two models have been fit to the data. Does the second model fit the data adequately? Give an appropriate test statistic, its degrees of freedom, a p-value, and a brief conclusion.

Now, for each of the three light intensities, suppose there is a linear relationship between the mean of the response variable and temperature.

d) For low light level A, provide the estimated linear regression equation relating mean response to temperature.

e) For high light level C, give an approximate 95% confidence interval for the slope of the linear regression equation. Based on this confidence interval, is there evidence that temperature affected bacterial colony growth at high light level C? Explain.

f) Estimate the difference between the slope for low light level A and the slope for high light level C, and determine if that difference is significantly different from 0. Provide the estimated difference, a test statistic, its degrees of freedom, a p-value, and a brief conclusion.
```r
proc glm;
    class light temp;
    model y=light temp light*temp;
run;

Class Level Information
Class   Levels  Values
light   3       A B C
temp   4      10 15 20 25
Number of observations 48

Source               DF  Squares   Mean Square    F Value   Pr > F
Model                 11  2420.80   220.072664      8.50     <.0001
Error                 36  932.13    25.892623
Corrected Total      47 3352.93

Source               DF  Type I SS  Mean Square    F Value   Pr > F
light                 2  1588.67    794.336444      30.68    <.0001
temp                  3  441.25     147.084041       5.68     0.0027
light*temp            6  390.87     65.145716       2.52     0.0389

proc glm;
    class light;
    model y=light temp light*temp / solution;
run;

Class Level Information
Class   Levels  Values
light   3       A B C
Number of observations 48

Source               DF  Squares   Mean Square    F Value   Pr > F
Model                 5  2224.26    444.853012      16.55    <.0001
Error                 42 1 128.67    26.873064
Corrected Total      47 3352.93

Source               DF  Type III SS  Mean Square    F Value   Pr > F
light                 2  1588.67    794.336444      29.56    <.0001
temp                  1  373.28    373.276984      13.89    0.0006
temp*light            2  262.32    131.157594       4.88     0.0124

Standard Parameter            Estimate  Error   t Value    Pr > |t|
Intercept                2.0445     4.2590  0.48      0.6337
light A                   -2.3075    6.0232  -0.38      0.7036
light B                   1.7600    6.0232  0.29      0.7716
light C                   0.0000    0.0000  .         .
temp                      0.2766    0.2318  1.19      0.2395
temp*light A              0.8080    0.3279  2.46      0.0179
temp*light B             -0.1413    0.3279 -0.43      0.6688
temp*light C              0.0000    0.0000  .         .
```