Interpretation of the Slope of the Least-Squares Regression Line

If we regress \(Y \) against \(X \) to get the least-squares regression equation \(\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \), we can interpret the slope \(\hat{\beta}_1 \) as follows:

- If \(\hat{\beta}_1 > 0 \), we could say something like, “An increase of one unit in \(X \) is associated with an estimated increase of \(\hat{\beta}_1 \) units in the mean of \(Y \).”
- If \(\hat{\beta}_1 < 0 \), we could say something like, “An increase of one unit in \(X \) is associated with an estimated decrease of \(-\hat{\beta}_1 \) units in the mean of \(Y \).”

If we regress \(\log(Y) \) against \(X \) to get the least-squares regression equation \(\hat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 X \), we can interpret the slope \(\hat{\beta}_1 \) as follows:

- “An increase of one unit in \(X \) is associated with an estimated multiplicative change of \(e^{\hat{\beta}_1} \) in the median of \(Y \).”
- Note that if \(\hat{\beta}_1 > 0 \), then the multiplicative factor will be greater than 1, suggesting that the median of \(Y \) increases with increasing \(X \).
- On the other hand if \(\hat{\beta}_1 < 0 \), then the multiplicative factor will be less than 1, suggesting that the median of \(Y \) decreases with increasing \(X \).

If we regress \(Y \) against \(\log(X) \) to get the least-squares regression equation \(\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \log(X) \), we can interpret the slope \(\hat{\beta}_1 \) as follows:

- If \(\hat{\beta}_1 > 0 \), we could say something like, “An increase by a multiplicative factor of 2 in \(X \) is associated with an estimated increase of \(\hat{\beta}_1 \log(2) \) units in the mean of \(Y \).”
- If \(\hat{\beta}_1 < 0 \), we could say something like, “An increase by a multiplicative factor of 2 in \(X \) is associated with an estimated decrease of \(-\hat{\beta}_1 \log(2) \) units in the mean of \(Y \).”

If we regress \(\log(Y) \) against \(\log(X) \) to get the least-squares regression equation \(\hat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 \log(X) \), we can interpret the slope \(\hat{\beta}_1 \) as follows:

- “An increase by a multiplicative factor of 2 in \(X \) is associated with an estimated multiplicative change of \(2^{\hat{\beta}_1} \) in the median of \(Y \).”
- Note that if \(\hat{\beta}_1 > 0 \), then the multiplicative factor will be greater than 1, suggesting that the median of \(Y \) increases with increasing \(X \).
- On the other hand if \(\hat{\beta}_1 < 0 \), then the multiplicative factor will be less than 1, suggesting that the median of \(Y \) decreases with increasing \(X \).

If a multiplicative factor is between 1 and 2, it is often more clear to describe changes in terms of a percent increase. A multiplicative factor of \(1.1X \) corresponds to an \(X \% \) increase. For example, a multiplicative factor of 1.42 corresponds to a 42\% increase.

If a multiplicative factor is between 0 and 1, it is often more clear to describe changes in terms of a percent decrease. A multiplicative factor of \(0.9X \) corresponds to a \(100 - X \% \) decrease. For example, a multiplicative factor of 0.77 corresponds to a 23\% decrease.