Analysis of Variance (ANOVA) for Simple Linear Regression

The variability in Y values can be partitioned into two pieces.

\[
\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2
\]

Total Sum of Squares $= \text{Regression Sum of Squares} + \text{Error (or Residual) Sum of Squares}$

\[
\text{SSTO} = \text{SSREG} + \text{SSE}
\]

We can organize the results of a simple linear regression analysis in an ANOVA table.

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>df_{REG}</td>
<td>SSREG</td>
<td>MSREG</td>
<td>$\frac{MSREG}{MSE}$</td>
<td>$P(T^2 \geq \frac{MSREG}{MSE})$</td>
</tr>
<tr>
<td>Error</td>
<td>df_E</td>
<td>SSE</td>
<td>MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>df_{TO}</td>
<td>SSTO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Regression} & : 1 & \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 & \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 & \frac{MSREG}{MSE} & P(T^2 \geq \frac{MSREG}{MSE}) & T^2 \sim F(1, n-2) \\
\text{Error} & : n-2 & \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 & \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 & & & \\
\text{Total} & : n-1 & \sum_{i=1}^{n} (Y_i - \bar{Y})^2 & & & \\
\end{align*}
\]

The F-statistic $\frac{MSREG}{MSE}$ is used to test

\[H_0 : \mu\{Y|X\} = \beta_0 \text{ versus } H_A : \mu\{Y|X\} = \beta_0 + \beta_1 X \text{ for some } \beta_1 \neq 0. \]

or $H_0 : \beta_1 = 0$ versus $H_A : \beta_1 \neq 0$ for short. The test is equivalent to the t-test that we learned about previously because

\[
(1) \quad F = \frac{MSREG}{MSE} = \frac{\beta_1^2}{[SE(\hat{\beta}_1)]^2} = t^2 \quad \text{and} \quad (2) \quad T^2 \sim F \text{ with } 1 \text{ and } n-2 \text{ d.f.} \quad \iff T \sim t \text{ with } n-2 \text{ d.f.}
\]
The *F*-statistic \(\frac{MSREG}{MSE} \) is a special case of the \(F \)-statistic used to compare full and reduced models.

\[
F = \frac{[RSS(\text{red.}) - RSS(\text{full})]/[df_{RSS(\text{red.})} - df_{RSS(\text{full})}]}{RSS(\text{full})/df_{RSS(\text{full})}}
\]

Recall that our null and alternative hypotheses are

\[
H_0 : \mu \{Y|X\} = \beta_0 \quad \text{versus} \quad H_A : \mu \{Y|X\} = \beta_0 + \beta_1 X \quad \text{for some } \beta_1 \neq 0.
\]

The full model corresponds to the situation where \(\beta_1 \) can be any value. The reduced model forces \(\beta_1 \) to be 0, just like \(H_0 \). Write down formulas for \(RSS(\text{red.}) \), \(RSS(\text{full}) \), \(df_{RSS(\text{red.})} \), and \(df_{RSS(\text{full})} \) for the special case of simple linear regression; and show that the resulting reduced vs. full model \(F \)-statistic is the same as \(F = \frac{MSREG}{MSE} \).

Because \(SSTO = SSREG + SSE \), we may write

\[
1 = \frac{SSREG}{SSTO} + \frac{SSE}{SSTO}.
\]

\(\frac{SSE}{SSTO} \) is the proportion of total variation in the \(Y \) values that was not explained by the regression of \(Y \) on \(X \).

The remaining proportion of variation in the \(Y \) values is

\[
1 - \frac{SSE}{SSTO} = \frac{SSREG}{SSTO}.
\]

This quantity – known as the coefficient of determination – is the proportion of the variation in the \(Y \) values that was explained by the regression of \(Y \) on \(X \).

It can be shown that the coefficient of determination is equal to the square of the sample linear correlation coefficient between \(X \) and \(Y \).

\[
1 - \frac{SSE}{SSTO} = \frac{SSREG}{SSTO} = r^2
\]