8. Large Data

- *Large n:* Overplotting, slow-down of real-time processes, eg brushing, slow startup.

- *Large p:* Too many variable circles, too many possible views to see.

 More information Swayne et al (98).

Some Work Arounds

- Overplotting: use smallest glyph - pixel points.

- Slow startup: Save data in binary format after first read.

- Slow real-time processes:

 ▶ Brushing: Modify user behavior.

 ▶ Use -only option to look at a subset of the whole data set.

 ▶ Don’t use textured dotplots.

- Too many variable circles: modify the XGobi resource file to make very small variable circles.

- Reduce dimensionality before visualization: Principal components, projection pursuit variable selection.
Linked Brushing with Large Data

Modifying the user behavior and software user interface.

- **Small data:**
 - drag brush
 - large glyphs

- **Large data (200 000 cases):**
 - jump brush
 - inactivate the brush during motion
 - update the brush only after button release
 - use single pixel glyphs to alleviate overplotting

Tours with Large Data

- **Grand Tour:** efficient, of order n, independent of p. It gets less continuous, and more jerky, as sample size increases.

- **Guided Tour:** Projection pursuit is slow. Need to do dimension reduction off-line.

- **Manual Controls:** Plot updates cannot keep up cursor motion.
Subsetting Tools

Command line options:

- `only n/N` Randomly choose \(n \) out of \(N \) cases
- `only a,n` Subset \(n \) cases starting from case \(a \)
- `subset n` Read in the whole data set but display a random sample of size \(n \).

Subset tool within XGobi allows specifying a contiguous block of cases, random sampling, selecting every \(n' \)th case, selecting all cases chosen in Identify mode, or all cases with the same label.