BLADE ELEMENT THEORY

Assumptions:
- The blade is composed of aerodynamically independent, narrow strips or elements.
- A differential blade element of chord C and width dr, located at a radius r from the rotor axis is considered as an airfoil section.

Theory:
The airscrew is advancing at a speed of V and the velocity at the disc is given by $V_d = V_0(1 + a) = V_0 + v$.
The slipstream behind an airscrew rotates in the same sense as the blades about the airscrew axis (z-axis).
The angular velocity of the airscrew blades are Ω and the angular velocity of the flow in the plane of the blades is $a_1\Omega$ where a_1 is a constant for the element considered.
This element has a linear velocity in the plane of the rotation of Ωr and the flow is itself rotating in the same plane and sense with an angular velocity $a_1\Omega$.
Thus the relative linear velocity of the element relative to the air in this plane is $\Omega r(1 - a_1)\omega r (\Omega - \omega)$.
θ is the geometric helix angle of the element measured between the zero lift-line of the element and the rotor disc.
α is the angle between the relative velocity V_R and the chord.
ϕ is the angle between the resultant velocity V_R and the plane if rotation.
Then from the geometry one can deduce:
$$\theta = \phi - \alpha = \arctan \frac{V_0}{\Omega - \omega} = \arctan \frac{V_0(1 + a)}{\Omega(1 - a_1)}$$
or
$$\alpha = \theta - \arctan \frac{V_0 + v}{\Omega - \omega} \quad (1)$$

STATIONARY BLADE ELEMENT WITH AIR FLOWING PAST IT

The elemental lift expressed by the blade element is:
$$\partial L = \frac{1}{2} \rho V_R^2 C_l dr \quad (2)$$
Where $V_R^2 = (V + \omega)^2 + (r \ast (\Omega - \omega))^2$
The elemental drag is found to be:
$$\partial D = \frac{1}{2} \rho V_R^2 C_d dr \quad (3)$$
Where C_l and C_d are 2-D aerodynamic characteristics of the blade section.
From the force diagram
\[\partial T = \partial L \cos \phi - \partial D \sin \phi \]

(4)

If \(B \) is the number of blades the \(dT = b \partial T \).

i.e

\[dT = bc \frac{1}{2} \rho V_r^2 (C_l \cos \phi - C_d \sin \phi) dr \]

(5)

Also from the force diagram: \(\frac{\partial Q}{r} = \partial L \sin \phi + \partial D \cos \phi \)

where \(\partial Q \) is the torque required to rotate the element about the axis of rotation.

Following the procedure used for \(dT \) one can show that the torque required to rotate \(B \) blades is given by:

\[dQ = Bc \left(\frac{1}{2} \rho V_r^2 \right) (C_l \sin \phi + C_d \cos \phi) r dr \]

(6)

From \(dT \) and \(dQ \) one can obtain the thrust (T), torque (Q), and power required (P) using the equations given below:
\[T = \int_0^R dT \quad (7) \]
\[Q = \int_0^R dQ \quad (8) \]
\[P = Q \Omega \quad (9) \]

\(\frac{dT}{dr} \) and \(\frac{dQ}{dr} \) are known as the thrust grading and the torque grading respectively.

Thrust \(dT \) from momentum principle: \(dT = \dot{m} \delta V = (\text{area of annulus} \times \text{velocity} \times \text{density}) \delta v \)

or

\[dT = (2\pi r dr \times V(1 + a) \rho)(V_e - V_0) \]
\[dT = (2\pi r dr \times V(1 + a) \rho)(v_0(1 + 2a) - V_0) \]
\[= (2\pi r \rho V_0^2(1 + a)(2a) dr \quad (10) \]

Equating 5 and 10

\[bc(\tfrac{1}{2} \rho V_0^2)(C_l \cos \phi - C_d \sin \phi) dr = 2\pi r \rho V_0^2(1 + a)(2a) dr \]
upon rearrangement:
\\[
\frac{bc}{4\pi r} V_R^2 (C_l \cos \phi - C_d \sin \phi) = V_0^2 (1 + a)(2a)
\]
(11)

but from the velocity diagram:
\\[V_R = V_0 (1 + a) 1/ \sin \phi \]
(12)

substitute (12) in (11) and rearrange to get:
\\[
\frac{bc}{8\pi r} 1/ \sin^2 \phi (C_l \cos \phi - C_d \sin \phi) = \frac{a}{1 + a}
\]
(13)

Relative angular velocity of the flow far upstream is Ω
Relative angular velocity of the flow at the disc is $\Omega - a_1 \Omega$ or $\Omega - \omega$
Relative angular velocity of the flow far downstream is $\Omega - 2a_1 \Omega$ or $\Omega - 2\omega$.

Elemental torque in the annulus dQ is equal to the angular momentum change per unit time in the annulus \(\dot{m}(\delta V_T) \cdot r \)

\[dQ = (2\pi r dr \rho V_0(1 + a)(2a_1 \Omega)(r) \]
(14)

Equating 6 and 14
\\[
bc \frac{r}{2 \rho V_R^2} (C_l \sin \phi + C_d \cos \phi) dr
= 4\pi^3 \rho V_0(1 + a)\Omega a_1 dr
\]
(15)

From the velocity diagram:
\\[V_R = \Omega r (1 - a_1) \sec \phi \]
(16)

Substitute 12 and 16 into equation 15 and rearrange to get
\\[
\frac{bc}{8\pi r} (1/ \sin \phi)(1/ \cos \phi)(C_l \sin \phi + C_d \cos \phi) = \frac{a_1}{1 - a_1}
\]
(17)

Summary

- Assume a and a_1
- Calculate $V_0(1 + a)$ and $\Omega r (1 - a_1)$ the velocity in the axial and tangential direction at the plane of rotation.
- Calculate α and ϕ where $\phi = \arctan \frac{V_0 + \nu}{(\Omega - \omega) r}$ $\alpha = \theta - \phi$
- Calculate C_l and C_d from 2-D sectional characteristics of the airfoil used.
- Calculate new a and a_1 using: $\frac{a}{\alpha} = \frac{bc}{8\pi r} 1/ \sin^2 \phi(C_l \cos \phi - C_d \sin \phi)$

\[\frac{a_1}{1 - a_1} = \frac{bc}{8\pi r} 1/ \cos \phi \sec \phi (C_l \sin \phi + C_d \cos \phi) \]
- if a and a_1 are converged go to step seven otherwise go to step 2 with new values of a and a_1. (For numerical convergence take an arithmetic mean of old a and a)
- Calculate T, Q, P and C_T, C_Q, and C_P