2. After the container is placed in the hot room with the lid on, the volume of air trapped inside is

\[V = LA \]

where

\[P_h = \rho_h R T_h \]

but the problem states that the hot room is in pressure equilibrium with the cool room, so

\[P_h = P_c \]

and

\[\rho_h = \frac{P_c}{RT_h} \]

and

\[m = \frac{P_c V}{RT_h} \]

when the container is removed, it contains the same mass and has the same volume ⇒ same density

\[\rho_h = \frac{m}{V} \]