Model Free Curve Fitting

- Response variable: Y

- Explanatory variables

 X_1, X_2, \ldots, X_p

- Summarize or describe trends in the conditional mean of Y.
 - No model is specified
 - Fit a “smooth” curve
Applications

- Fitting a smooth curve to a plot can be a first step in building a parametric model
 - Roughly determine the “shape” of the curve
 - Little subject matter motivation
 - No need to specify a parametric formula

\[
Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i
\]

- Let the data speak for themselves.
• Check the fit of a parametric model

• Make predictions (interpolation)

\[
\begin{array}{cc}
X_1 & \hat{Y}_1 \\
X_2 & \hat{Y}_2 \\
\vdots & \vdots \\
X_k & \hat{Y}_k \\
\end{array}
\]

Must store

Use linear interpolation?

• Extrapolation?
Diabetes data: (Sockett, et al. 1987)

- Factors affecting patterns of insulin-dependent diabetes mellitus in children.

- Level of serum C-peptide at diagnosis
 \[Y = \log \text{ (serum C-peptide conc.)} \]

- \(X = \text{age (in years) at diagnosis.} \)
<table>
<thead>
<tr>
<th>subject</th>
<th>age</th>
<th>basedef</th>
<th>Cpeptide</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.9</td>
<td>-11.6</td>
<td>3.0</td>
<td>1.099</td>
</tr>
<tr>
<td>24</td>
<td>1.0</td>
<td>-8.2</td>
<td>3.9</td>
<td>1.361</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td>-19.2</td>
<td>3.4</td>
<td>1.224</td>
</tr>
<tr>
<td>10</td>
<td>1.9</td>
<td>-25.0</td>
<td>3.7</td>
<td>1.308</td>
</tr>
<tr>
<td>11</td>
<td>2.2</td>
<td>-3.1</td>
<td>3.9</td>
<td>1.361</td>
</tr>
<tr>
<td>36</td>
<td>4.2</td>
<td>-17.0</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>12</td>
<td>4.8</td>
<td>-7.8</td>
<td>4.5</td>
<td>1.504</td>
</tr>
<tr>
<td>35</td>
<td>4.8</td>
<td>-9.5</td>
<td>3.9</td>
<td>1.361</td>
</tr>
<tr>
<td>34</td>
<td>5.1</td>
<td>-5.1</td>
<td>4.6</td>
<td>1.526</td>
</tr>
<tr>
<td>1</td>
<td>5.2</td>
<td>-8.1</td>
<td>4.8</td>
<td>1.569</td>
</tr>
<tr>
<td>14</td>
<td>5.2</td>
<td>-4.5</td>
<td>4.9</td>
<td>1.589</td>
</tr>
<tr>
<td>9</td>
<td>5.8</td>
<td>-2.8</td>
<td>5.6</td>
<td>1.723</td>
</tr>
<tr>
<td>37</td>
<td>6.9</td>
<td>-3.3</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>13</td>
<td>7.9</td>
<td>-13.9</td>
<td>4.8</td>
<td>1.569</td>
</tr>
<tr>
<td>17</td>
<td>7.9</td>
<td>-2.0</td>
<td>4.8</td>
<td>1.569</td>
</tr>
<tr>
<td>27</td>
<td>8.1</td>
<td>-1.6</td>
<td>5.2</td>
<td>1.649</td>
</tr>
<tr>
<td>20</td>
<td>8.5</td>
<td>-0.2</td>
<td>5.3</td>
<td>1.668</td>
</tr>
<tr>
<td>2</td>
<td>8.8</td>
<td>-16.1</td>
<td>4.1</td>
<td>1.411</td>
</tr>
<tr>
<td>42</td>
<td>8.9</td>
<td>-10.0</td>
<td>4.9</td>
<td>1.589</td>
</tr>
<tr>
<td>30</td>
<td>9.8</td>
<td>-1.2</td>
<td>4.8</td>
<td>1.569</td>
</tr>
<tr>
<td>39</td>
<td>9.9</td>
<td>-3.3</td>
<td>4.9</td>
<td>1.589</td>
</tr>
<tr>
<td>subject</td>
<td>age</td>
<td>basedef</td>
<td>cpeptide</td>
<td>Y</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>5</td>
<td>10.4</td>
<td>-29.0</td>
<td>5.0</td>
<td>1.609</td>
</tr>
<tr>
<td>3</td>
<td>10.5</td>
<td>-0.9</td>
<td>5.2</td>
<td>1.649</td>
</tr>
<tr>
<td>4</td>
<td>10.6</td>
<td>-7.8</td>
<td>5.5</td>
<td>1.705</td>
</tr>
<tr>
<td>19</td>
<td>10.6</td>
<td>-11.2</td>
<td>4.5</td>
<td>1.504</td>
</tr>
<tr>
<td>43</td>
<td>10.8</td>
<td>-13.5</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>31</td>
<td>11.0</td>
<td>-14.3</td>
<td>4.4</td>
<td>1.482</td>
</tr>
<tr>
<td>21</td>
<td>11.1</td>
<td>-6.1</td>
<td>4.7</td>
<td>1.548</td>
</tr>
<tr>
<td>33</td>
<td>11.1</td>
<td>-16.8</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>23</td>
<td>11.3</td>
<td>-3.6</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>18</td>
<td>11.5</td>
<td>-9.0</td>
<td>5.5</td>
<td>1.705</td>
</tr>
<tr>
<td>16</td>
<td>11.8</td>
<td>-2.1</td>
<td>4.6</td>
<td>1.526</td>
</tr>
<tr>
<td>26</td>
<td>11.9</td>
<td>-2.0</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>32</td>
<td>12.4</td>
<td>-0.8</td>
<td>5.2</td>
<td>1.649</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
<td>-13.6</td>
<td>4.1</td>
<td>1.411</td>
</tr>
<tr>
<td>7</td>
<td>12.7</td>
<td>-18.9</td>
<td>3.4</td>
<td>1.224</td>
</tr>
<tr>
<td>22</td>
<td>12.8</td>
<td>-1.0</td>
<td>6.6</td>
<td>1.887</td>
</tr>
<tr>
<td>38</td>
<td>13.2</td>
<td>-0.7</td>
<td>6.0</td>
<td>1.792</td>
</tr>
<tr>
<td>41</td>
<td>13.2</td>
<td>-1.9</td>
<td>4.6</td>
<td>1.526</td>
</tr>
<tr>
<td>28</td>
<td>13.8</td>
<td>-11.9</td>
<td>3.7</td>
<td>1.308</td>
</tr>
<tr>
<td>25</td>
<td>14.5</td>
<td>-0.5</td>
<td>5.7</td>
<td>1.740</td>
</tr>
<tr>
<td>29</td>
<td>15.5</td>
<td>-0.7</td>
<td>4.9</td>
<td>1.589</td>
</tr>
<tr>
<td>8</td>
<td>15.6</td>
<td>-10.6</td>
<td>4.9</td>
<td>1.589</td>
</tr>
</tbody>
</table>
C-peptide Concentrations

Age (years) vs. log(concentration)

Concentration (pmol/ml)
C-peptide Concentrations

log(concentration)

Age (years)

5 10 15
C-peptide Concentrations

Age (years)

log(concentration)

5 10 15

1.2 1.4 1.6 1.8

C-peptide Concentrations

log(concentration)

1.2 1.4 1.6 1.8

5 10 15

Age (years)
C-peptide Concentrations

Age (years)

log(concentration)

1.2 1.4 1.6 1.8

C-peptide Concentrations

log(concentration)

Age (years)
This is SPLUS code for plotting
log(C-peptide concentration)
against age. This file stored as
cpeptide1.spl

The data are stored in the file
cpeptide.tex

There are four numbers on each line
in the following order:
Subject identification code
Age at diagnosis (years)
Base deficit (measure of acidity)
C-peptide concentration (pmol/ml)
Enter the data into a data frame
Compute the natural log of the
C-peptide concentration.

cpep <- read.table("cpeptide.tex", header=T)
cpep$Y <- log(cpep$Cpeptide)
cpep$Y <- round(cpep$Y,digits=3)
Sort the data file by age

i <- sort.list(cpep$age)
cpep <- cpep[i,]
cpep

Code for plotting weight against time
Specify plotting symbol and size of
graph in inches.
fin=c(w,h) specifies a plot that is w
inches wide and h inches high.
pch=18 requests a filled diamond as a
plotting symbol.
mkh=b requests plotting symbols that
are b inches high.
mex=a sets the spacing between lines
printed in the margins.
plt plt=c(.2,.8,.2,.8) defines the
fraction of figure region to use
for plotting. This can provide
more space for to label margins.
par(fin=c(7.0,7.0),pch=18,mkh=.1,mex=1.5,
 plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
 ylab="log(concentration)",
 main="C-peptide Concentrations")

The following three lines are for adding
an axis for C-peptide concentration on
the original scale (pmol/ml).
pretty(): Returns a vector of ordered
and equally spaced values that span
the range of the input.

Y.exp <- pretty(range(exp(cpep$Y)))
axis(side=4, at=log(Y.exp),
 lab=Y.exp, srt=90)
mtext("Concentration (pmol/ml)",
 side=4, line=3)
Fit a straight line model

cpep.lin <- lm(Y~age, data=cpep)

par(fin=c(7.0,7.0), pch=18, mkh=.1, mex=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
 ylab="log(concentration)",
 main="C-peptide Concentrations")
a <- seq(1, 16, .5)
lines(a, predict(cpep.lin, data.frame(age=a),
 type="response"), lty=1, lwd=3)
Fit a quadratic model

cpep.q <- lm(Y~age+age^2, data=cpep)

par(fin=c(7.0,7.0), pch=18, mkh=.1, mex=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
 ylab="log(concentration)",
 main="C-peptide Concentrations")
a <- seq(1, 16, .5)
lines(a, predict(cpep.q, data.frame(age=a),
 type="response"), lty=1, lwd=3)
Fit a cubic model

cpep.3 <- lm(Y ~ age + age^2 + age^3, data = cpep)

par(fin = c(7.0, 7.0), pch = 18, mch = .1, mex = 1.5, plt = c(.2, .8, .2, .8))
plot(cpep$age, cpep$Y, type = "p",
 xlab = "Age (years)",
 ylab = "log(concentration)",
 main = "C-peptide Concentrations")
a <- seq(1, 16, .5)
lines(a, predict(cpep.3, data.frame(age = a),
 type = "response"), lty = 1, lwd = 3)
“Bin” Smoothers:

- Partition the range of the explanatory variable \((X)\) into \(p\) disjoint and exhaustive regions

- About the same number of observations in each “bin”

- Compute the average of the responses \((Y\text{ values})\) in each bin
Running mean or median smoothers

- Use a different “bin” for each value of the explanatory variable X

- **Symmetric nearest neighbor version:** Find the nearest k cases to the left of X and the nearest k cases to the right of X
 - Compute the mean (or median)
 - Include X?
 - Boundary considerations

- **Nearest neighbor version:** Use the r nearest cases to X
Running mean or median smoothers

- Simple to compute
- May not be smooth enough
- Tend to flatten out trends near the boundaries)
Running Line Smoothers

• Fit a least squares regression line to the points “near” X
 • Symmetric nearest neighbors
 • Nearest neighbors

• Predict the mean response at X

$$\hat{Y}_X = b_{0,X} + b_{1,X}X$$

The estimated coefficients will not be the same for every X
(local regression lines)

• parbox[t]6.0inUsing larger neighborhoods produces smoother curves.
Running Line Smoothers

- In the center of the data
 - the intercept is dominant
 - the slope plays a smaller role

- Near the edges (boundaries)
 - Slope is important for picking up trends in asymmetric neighborhoods of X.
 - This reduces some of the "bias" associated with running means.
• Points inside a neighborhood have equal weight.

 – points “outside” have zero weight

 – source of jaggedness

 – “weight” the points in a neighborhood.

 * higher weights for points closer to \(X \).

 * weights go to zero near the ends of the neighborhood.

 – Cleveland’s “loess” smoother
Kernel Smoothers

- Local weighted average with local weights defined by a “kernel”.

\[
\hat{Y}_i = \frac{\sum_{j=1}^{n} Y_j K \left(\frac{X_j - X}{b} \right)}{\sum_{j=1}^{n} K \left(\frac{X_j - X}{b} \right)}
\]

- the value of \(K \left(\frac{X_j - X}{b} \right) \) decreases in a “smooth” way as \(X_j \) moves farther away from \(X \).

- \(b \) is the “bandwidth”.

23
Examples:

“Gaussian” kernel smoother

\[
K\left(\frac{X_j - X}{b}\right) = \frac{1}{\sqrt{2\pi b}} e^{\frac{1}{2}\left(\frac{X_j - X}{b}\right)^2}
\]

“Minimum variance” kernel

\[
K\left(\frac{X_j - X}{b}\right) = \begin{cases}
\frac{3}{8b} \left(3 - 5\left[\frac{X_j - X}{b}\right]^2\right) & \text{if } \left|\frac{X_j - X}{b}\right| < 1 \\
0 & \text{otherwise}
\end{cases}
\]

This choice of weights minimizes the large sample variance of the estimator.
• The “kernel” is truncated at the end of the data.

• Simulation studies have shown that
 – the choice of the form of the kernel is not very important.
 – the “bandwidth” is important.
Locally Weighted Running Line Smoothers (loess)

Data:

\[(X_1, Y_1)\]
\[(X_2, Y_2)\]
\[\vdots \quad \vdots\]
\[(X_n, Y_n)\]

Objective:

Estimate the conditional means of \(Y\) at a set of \(X\) values.

- Use cases in a neighborhood of \(X\)
- Fit a regression model
- Use weighted least squares estimation
(Step 1) Identify the \(k \) observations with \(X_j \) values closest to \(X \)

Identify this set of \(k \) nearest neighbors as \(N_k(X) \).

(Step 2) Compute the distance of the farthest near neighbor

\[
\Delta_K(X) = \max_{X_j \in N_K(X)} |X - X_j|
\]
(Step 3) Assign weights to each of the “near” neighbors using the tricube weight function

\[W_j = W \left(\frac{|X - X_j|}{\Delta_k(X)} \right). \]

where

\[W(u) = \begin{cases}
(1 - u^3)^3, & 0 \leq u < 1 \\
0, & \text{otherwise}
\end{cases} \]
(Step 4) Fit a regression line using weighted least squares.

Find a_X and b_X to minimize

$$\sum_{j=1}^{n} W_j(Y_j - a_X - b_X X_j)^2$$

Solution:

$$b_X = \frac{\sum_{j=1}^{n} W_j(X_j - \bar{X})(Y_j - \bar{Y}_X)}{\sum_{j=1}^{n} W_j(X_j - \bar{X})^2}$$

$$a_X = \bar{Y}_X - b_X \bar{X}$$
where

\[\bar{X} = \frac{\sum_{j=1}^{n} W_j X_j}{n \sum_{j=1}^{n} W_j} \]

\[\bar{Y} = \frac{\sum_{j=1}^{n} W_j Y_j}{n \sum_{j=1}^{n} W_j} \]

(Step 5) Predict at \(X \):

\[\hat{Y}_X = a_X + b_X(X) \]

and record \((X, \hat{Y}_X)\)

Repeat Steps 1 to 5 for a series of \(X \) values:
• You could fit local polynomial regression curves.

\[\hat{Y}_X = a_X + b_X X + c_X X^2 \]

• You could replace the tri-cube weight function.

• The size of \(N_K(X) \) is important.
How wide should your local neighborhoods be?

- **Small**
 - curve is less smooth (increase variability)
 - react to local changes (reduce bias)

- **Large**
 - curve is smoother (less variability)
 - may “smooth out” local patterns (more bias).
> # Compare the loess curves with different spans
>
> cpep.lo100 <- loess(formula=Y~age,
> data=cpep,span=1.00,degree=1)
>
> cpep.lo75 <- loess(formula=Y~age,
> data=cpep,span=.75,degree=1)
>
> cpep.lo25 <- loess(formula=Y~age,
> data=cpep,span=.25,degree=1)
>
> anova(cpep.lo100,cpep.lo75,cpep.lo25)

Model 1:
loess(formula = Y ~ age, data = cpep,
 span = 1, degree = 1)

Model 2:
loess(formula = Y ~ age, data = cpep,
 span = 0.75, degree = 1)

Model 3:
loess(formula = Y ~ age, data = cpep,
 span = 0.25, degree = 1)
Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>ENP</th>
<th>RSS</th>
<th>Test</th>
<th>F Value</th>
<th>Pr(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>0.72033</td>
<td>1 vs 2</td>
<td>2.88</td>
<td>0.098068</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>0.66027</td>
<td>2 vs 3</td>
<td>0.31</td>
<td>0.951810</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>0.61296</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plot residuals

```r
scatter.smooth(fitted(cpep.lo100),
    residuals(cpep.lo100), span=1, degree=1)
scatter.smooth(fitted(cpep.lo75),
    residuals(cpep.lo75), span=1, degree=1)
scatter.smooth(fitted(cpep.lo25),
    residuals(cpep.lo25), span=1, degree=1)

qqnorm(residuals(cpep.lo75))
qqline(residuals(cpep.lo75))
```
C-peptide Concentrations
Loess Curves

Age (years)

log(concentration)

span=1.0
span=0.75
span=0.25

B/F/B
fitted(cpep.lo100)

residuals(cpep.lo100)

1.35 1.40 1.45 1.50 1.55

-0.2 0.0 0.2

/BF/BJ

37
Consider a second degree polynomial smoother

par(fin=c(7.0,7.0),pch=18,mkh=.1,mex=1.5,
 plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
 ylab="log(concentration)",
 main="C-peptide Concentrations \n Loess Curves")
lines(cpep$age, loess(formula=Y~age,data=cpep,
 span=.75,degree=1)$fitted.values, lty=1,lwd=3)
lines(cpep$age, loess(formula=Y~age,data=cpep,
 span=.75,degree=2)$fitted.values, lty=3,lwd=3)
legend(5,1.31,c("degree=1.0", "degree=2"),
 lty=c(1,3),bty="n")
C-peptide Concentrations
Loess Curves

Age (years)

log(concentration)

degree=1.0

degree=2

C-peptide Concentrations
Loess Curves

log(concentration)

degree=1.0

degree=2

Age (years)
cpep.lo751 <- loess(formula=Y~age,
 data=cpep,span=.75,degree=1)
cpep.lo752 <- loess(formula=Y~age,
 data=cpep,span=.75,degree=2)

anova(cpep.lo751,cpep.lo752)

Model 1:
loess(formula = Y ~ age, data = cpep,
 span = 0.75, degree = 1)

Model 2:
loess(formula = Y ~ age, data = cpep,
 span = 0.75, degree = 2)

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>RSS</th>
<th>Test</th>
<th>F Value</th>
<th>Pr(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9</td>
<td>1 vs 2</td>
<td>1.54</td>
<td>0.22873</td>
</tr>
<tr>
<td>2</td>
<td>4.6</td>
<td></td>
<td>0.61928</td>
<td></td>
</tr>
</tbody>
</table>

Plot residuals

scatter.smooth(fitted(cpep.lo752),
 residuals(cpep.lo752), span=1, degree=1)

qqnorm(residuals(cpep.lo752))
qqline(residuals(cpep.lo752))
Quantiles of Standard Normal residuals(cpep.lo752)
Make predictions using the predict() and
compute pointwise 95% confidence intervals

cpep.se <- predict(cpep.lo752, seq(1,15,1),
 se.fit=T)
cpep.locl <- pointwise(cpep.se, coverage=.95)
cpep.locl

$upper:
 [1] 1.350755 1.419861 1.496769 1.570916 1.630554

$fit:
 [1] 1.211487 1.323710 1.417012 1.491429 1.547887

$lower:
 [1] 1.072218 1.227558 1.337255 1.411942 1.465219
plot(cpep.lo752, confidence=15, coverage=0.95, ylim=c(1.0,1.8))

Plot the curve with approximate pointwise
confidence limits

par(fin=c(7.0, 7.0), pch=18, mkh=.001, mex=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="n", xlim=c(0,16), ylim=c(1.0,1.8), xlab="Age (years)", ylab="log(concentration)", main="C-peptide Concentrations
\n Local Quadratic Loess Smoother")
lines(smooth.spline(cpep.locl$x, cpep.locl$fit), lty=1,lwd=3)
lines(smooth.spline(cpep.locl$x, cpep.locl$upper), lty=3,lwd=3)
lines(smooth.spline(cpep.locl$x, cpep.locl$lower), lty=3,lwd=3)
C-peptide Concentrations
Local Quadratic Loess Smoother

log(concentration)

Age (years)

0 5 10 15

1.0 1.2 1.4 1.6 1.8