Model Free Curve Fitting

- Response variable: \(Y \)
- Explanatory variables
 \[X_1, X_2, \ldots, X_p \]
- Summarize or describe trends in the conditional mean of \(Y \).
 - No model is specified
 - Fit a “smooth” curve

Applications

- Fitting a smooth curve to a plot can be a first step in building a parametric model
 - Roughly determine the “shape” of the curve
 - Little subject matter motivation
 - No need to specify a parametric formula
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i \]
 - Let the data speak for themselves.

- Check the fit of a parametric model

- Make predictions (interpolation)
 \[
 \begin{array}{ll}
 X_1 & Y_1 \\
 X_2 & Y_2 \\
 \vdots & \vdots \\
 X_k & Y_k \\
 \end{array}
 \]
 Use linear interpolation?

- Extrapolation?

Diabetes data: (Sockett, et al. 1987)

- Factors affecting patterns of insulin-dependent diabetes mellitus in children.
 - Level of serum C-peptide at diagnosis
 \[Y = \log \text{(serum C-peptide conc.)} \]
 - \(X \) = age (in years) at diagnosis.
C-peptide Concentrations

<table>
<thead>
<tr>
<th>subject</th>
<th>age (years)</th>
<th>base (def)</th>
<th>C-peptide</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10.4</td>
<td>-29.0</td>
<td>5.0</td>
<td>1.609</td>
</tr>
<tr>
<td>3</td>
<td>10.5</td>
<td>-0.9</td>
<td>5.2</td>
<td>1.649</td>
</tr>
<tr>
<td>4</td>
<td>10.6</td>
<td>-7.8</td>
<td>5.5</td>
<td>1.705</td>
</tr>
<tr>
<td>19</td>
<td>10.6</td>
<td>-11.2</td>
<td>4.5</td>
<td>1.504</td>
</tr>
<tr>
<td>43</td>
<td>10.8</td>
<td>-13.5</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>31</td>
<td>11.0</td>
<td>-14.3</td>
<td>4.4</td>
<td>1.482</td>
</tr>
<tr>
<td>21</td>
<td>11.1</td>
<td>-6.1</td>
<td>4.7</td>
<td>1.543</td>
</tr>
<tr>
<td>33</td>
<td>11.1</td>
<td>-16.8</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>23</td>
<td>11.3</td>
<td>-3.6</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>18</td>
<td>11.5</td>
<td>-9.0</td>
<td>5.5</td>
<td>1.705</td>
</tr>
<tr>
<td>16</td>
<td>11.8</td>
<td>-2.1</td>
<td>4.6</td>
<td>1.526</td>
</tr>
<tr>
<td>26</td>
<td>11.9</td>
<td>-2.0</td>
<td>5.1</td>
<td>1.629</td>
</tr>
<tr>
<td>32</td>
<td>12.4</td>
<td>-0.8</td>
<td>5.2</td>
<td>1.649</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
<td>-13.6</td>
<td>4.1</td>
<td>1.411</td>
</tr>
<tr>
<td>7</td>
<td>12.7</td>
<td>-18.9</td>
<td>3.4</td>
<td>1.224</td>
</tr>
<tr>
<td>22</td>
<td>12.8</td>
<td>-1.0</td>
<td>6.6</td>
<td>1.887</td>
</tr>
<tr>
<td>38</td>
<td>13.2</td>
<td>-0.7</td>
<td>6.0</td>
<td>1.792</td>
</tr>
<tr>
<td>41</td>
<td>13.2</td>
<td>-1.9</td>
<td>4.6</td>
<td>1.526</td>
</tr>
<tr>
<td>28</td>
<td>13.8</td>
<td>-11.9</td>
<td>3.7</td>
<td>1.308</td>
</tr>
<tr>
<td>25</td>
<td>14.5</td>
<td>-0.5</td>
<td>5.7</td>
<td>1.740</td>
</tr>
<tr>
<td>29</td>
<td>15.5</td>
<td>-0.7</td>
<td>4.9</td>
<td>1.589</td>
</tr>
<tr>
<td>8</td>
<td>15.6</td>
<td>-10.6</td>
<td>4.9</td>
<td>1.589</td>
</tr>
</tbody>
</table>
This is SPLUS code for plotting
log(C-peptide concentration)
against age. This file stored as
cpeptide1.spl

The data are stored in the file
cpeptide.tex

There are four numbers on each line
in the following order:
Subject identification code
Age at diagnosis (years)
Base deficit (measure of acidity)
C-peptide concentration (pmol/ml)
Enter the data into a data frame
Compute the natural log of the
C-peptide concentration.

cpep <- read.table("cpeptide.tex", header=T)
cpep$Y <- log(cpep$Peptide)
cpep$Y <- round(cpep$Y, digits=3)

Sort the data file by age
i <- sort.list(cpep$age)
cpep <- cpep[i,]
cpep

Code for plotting weight against time
Specify plotting symbol and size of
graph in inches.
fin=c(w,h) specifies a plot that is w
inches wide and h inches high.
pch=18 requests a filled diamond as a
plotting symbol.
mkh=b requests plotting symbols that
are b inches high.
mex=a sets the spacing between lines
printed in the margins.
plt plt=c(.2,.8,.2,.8) defines the
fraction of figure region to use
for plotting. This can provide
more space for to label margins.
par(fin=c(7.0,7.0),pch=18,mkh=.1,me=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
ylab="log(concentration)",
main="C-peptide Concentrations")

The following three lines are for adding
an axis for C-peptide concentration on
the original scale (pmol/ml).
pretty(): Returns a vector of ordered
and equally spaced values that span
the range of the input.

Y.exp <- pretty(range(exp(cpep$Y)))
axis(side=4, at=log(Y.exp),
 xlab=Y.exp, srt=90)
mtext("Concentration (pmol/ml)",
 side=4, line=3)

Fit a straight line model
cpep.lin <- lm(Y~age,data=cpep)

par(fin=c(7.0,7.0),pch=18,mkh=.1,me=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
ylab="log(concentration)",
main="C-peptide Concentrations")
a <- seq(1,16,.5)
lines(a, predict(cpep.lin, data.frame(age=a),
 type="response"),lty=1,lwd=3)

Fit a quadratic model
cpep.q <- lm(Y~age+age^2,data=cpep)

par(fin=c(7.0,7.0),pch=18,mkh=.1,me=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
ylab="log(concentration)",
main="C-peptide Concentrations")
a <- seq(1,16,.5)
lines(a, predict(cpep.q, data.frame(age=a),
 type="response"),lty=1,lwd=3)

Fit a cubic model
cpep.3 <- lm(Y~age+age^2+age^3,data=cpep)

par(fin=c(7.0,7.0),pch=18,mkh=.1,me=1.5, plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
 xlab="Age (years)",
ylab="log(concentration)",
main="C-peptide Concentrations")
a <- seq(1,16,.5)
lines(a, predict(cpep.3, data.frame(age=a),
 type="response"),lty=1,lwd=3)
“Bin” Smoothers:

- Partition the range of the explanatory variable (X) into p disjoint and exhaustive regions
- About the same number of observations in each “bin”
- Compute the average of the responses (Y values) in each bin

Running mean or median smoothers

- Use a different “bin” for each value of the explanatory variable X
- Symmetric nearest neighbor version: Find the nearest k cases to the left of X and the nearest k cases to the right of X
 - Compute the mean (or median)
 - Include X?
 - Boundary considerations
- Nearest neighbor version: Use the r nearest cases to X

Running Line Smoothers

- Fit a least squares regression line to the points “near” X
 - Symmetric nearest neighbors
 - Nearest neighbors
- Predict the mean response at X
 \[
 \hat{Y}_X = b_{0,X} + b_{1,X}X
 \]
 - The estimated coefficients will not be the same for every X
 (local regression lines)
- parbox[t]6.0in Using larger neighborhoods produces smoother curves.
Running Line Smoothers

- In the center of the data
 - the intercept is dominant
 - the slope plays a smaller role
- Near the edges (boundaries)
 - Slope is important for picking up trends in asymmetric neighborhoods of X.
 - This reduces some of the "bias" associated with running means.

Points inside a neighborhood have equal weight.
- points "outside" have zero weight
- source of jaggedness
- "weight" the points in a neighborhood.
 - higher weights for points closer to X.
 - weights go to zero near the ends of the neighborhood.
- Cleveland's "loess" smoother

Kernel Smoothers

- Local weighted average with local weights defined by a "kernel".
 \[
 \hat{Y}_i = \frac{\sum_{j=1}^{n} Y_j K \left(\frac{X_j - X}{b} \right)}{\sum_{j=1}^{n} K \left(\frac{X_j - X}{b} \right)}
 \]
 - the value of $K \left(\frac{X_j - X}{b} \right)$ decreases in a "smooth" way as X_j moves farther away from X.
 - b is the "bandwidth".

Examples:

"Gaussian" kernel smoother
\[
K \left(\frac{X_j - X}{b} \right) = \frac{1}{\sqrt{2\pi}b} e^{-\frac{1}{2} \left(\frac{X_j - X}{b} \right)^2}
\]

"Minimum variance" kernel
\[
K \left(\frac{X_j - X}{b} \right) = \begin{cases}
\frac{3}{35} (3 - 5[\frac{X_j - X}{b}]^2) & \text{if } |\frac{X_j - X}{b}| < 1 \\
0 & \text{otherwise}
\end{cases}
\]

This choice of weights minimizes the large sample variance of the estimator.
Locally Weighted Running Line Smoothers (loess)

Data:
\[(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)\]

Objective:
Estimate the conditional means of \(Y \) at a set of \(X \) values.
- Use cases in a neighborhood of \(X \)
- Fit a regression model
- Use weighted least squares estimation

(Step 1) Identify the \(k \) observations with \(X_j \) values closest to \(X \)

Identify this set of \(k \) nearest neighbors as \(N_k(X) \).

(Step 2) Compute the distance of the farthest near neighbor
\[\Delta_k(X) = \max_{X_j \in N_k(X)} |X - X_j|\]

(Step 3) Assign weights to each of the “near” neighbors using the tricube weight function
\[W_j = W\left(\frac{|X - X_j|}{\Delta_k(X)}\right),\]
where
\[W(u) = \begin{cases} (1 - u^3)^3, & 0 \leq u < 1 \\ 0, & \text{otherwise} \end{cases}\]
(Step 4) Fit a regression line using weighted least squares.

Find a_X and b_X to minimize

$$\sum_{j=1}^{n} W_j(Y_j - a_X - b_X X_j)^2$$

Solution:

$$b_X = \frac{\sum_{j=1}^{n} W_j(X_j - \bar{X})(Y_j - \bar{Y})}{\sum_{j=1}^{n} W_j(X_j - \bar{X})^2}$$

$$a_X = \bar{Y} - b_X \bar{X}$$

(Step 5) Predict at X:

$$\hat{Y}_X = a_X + b_X(X)$$

and record (X, \hat{Y}_X)

Repeat Steps 1 to 5 for a series of X values:

- You could fit local polynomial regression curves.
 $$\hat{Y}_X = a_X + b_X X + c_X X^2$$

- You could replace the tri-cube weight function.

- The size of $N_k(X)$ is important.
How wide should your local neighborhoods be?
- **Small**
 - curve is less smooth (increased variability)
 - react to local changes (reduce bias)
- **Large**
 - curve is smoother (less variability)
 - may "smooth out" local patterns (more bias).

```r
> # Compare the loess curves with different spans
> cpep.lo100 <- loess(formula=Y ~ age, data=cpep, span=1.00, degree=1)
> cpep.lo75  <- loess(formula=Y ~ age, data=cpep, span=0.75, degree=1)
> cpep.lo25  <- loess(formula=Y ~ age, data=cpep, span=0.25, degree=1)
> anova(cpep.lo100, cpep.lo75, cpep.lo25)

Model 1:
loess(formula = Y ~ age, data = cpep,
      span = 1, degree = 1)
Model 2:
loess(formula = Y ~ age, data = cpep,
      span = 0.75, degree = 1)
Model 3:
loess(formula = Y ~ age, data = cpep,
      span = 0.25, degree = 1)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>ENP</th>
<th>RSS</th>
<th>Test</th>
<th>F Value</th>
<th>Pr(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>0.72033</td>
<td>1 vs 2</td>
<td>2.88 0.098068</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>0.66027</td>
<td>2 vs 3</td>
<td>0.31 0.951810</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>0.61296</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```r
# Plot residuals
scatter.smooth(fitted(cpep.lo100),
residuals(cpep.lo100), span=1, degree=1)
scatter.smooth(fitted(cpep.lo75),
residuals(cpep.lo75), span=1, degree=1)
scatter.smooth(fitted(cpep.lo25),
residuals(cpep.lo25), span=1, degree=1)
qqnorm(residuals(cpep.lo75))
qqline(residuals(cpep.lo75))
```
Consider a second degree polynomial smoother

```r
par(fin=c(7.0,7.0),pch=18,mgp=.1,mex=.5,
     plt=c(.2,.8,.2,.8))
plot(cpep$age, cpep$Y, type="p",
     xlab="Age (years)",
     ylab="log(concentration)",
     main="C-peptide Concentrations 
     n Loess Curves")
lines(cpep$age, loess(formula=Y~age, data=cpep,
                        span=.75,degree=1)$fitted.values, lty=1,lwd=3)
lines(cpep$age, loess(formula=Y~age, data=cpep,
                        span=.75,degree=2)$fitted.values, lty=3,lwd=3)
legend(5,1.31,c("degree=1.0", "degree=2"),
        lty=c(1,3),bty="n")
```
cpep.lo751 <- loess(formula=Y ~ age, data=cpep, span=.75, degree=1)
cpep.lo752 <- loess(formula=Y ~ age, data=cpep, span=.75, degree=2)

anova(cpep.lo751, cpep.lo752)

Model 1:
loess(formula = Y ~ age, data = cpep, span = 0.75, degree = 1)

Model 2:
loess(formula = Y ~ age, data = cpep, span = 0.75, degree = 2)

Analysis of Variance Table
 ENP RSS Test F Value Pr(F)
1 2.9 0.66027 1 vs 2 1.54 0.22873
2 4.6 0.61928

Plot residuals
scatter.smooth(fitted(cpep.lo752), residuals(cpep.lo752), span=1, degree=1)
qqnorm(residuals(cpep.lo752))
qqline(residuals(cpep.lo752))
Make predictions using the predict() and
compute pointwise 95% confidence intervals

cpep.se <- predict(cpep.lo752, seq(1,15,1),
 se.fit=T)
cpep.locl <- pointwise(cpep.se, coverage=.95)
cpep.locl

$upper:
 [1] 1.350755 1.419861 1.496769 1.570916 1.630554

$fit:
 [1] 1.211487 1.323710 1.417012 1.491429 1.547887

$lower:
 [1] 1.072218 1.227558 1.337255 1.411942 1.465219

plot(cpep.lo752, confidence=15,coverage=0.95,
 ylim=c(1.0,1.8))

Plot the curve with approximate pointwise
confidence limits

par(fin=c(7.0,7.0),pch=18,mkh=.001,mar=1.5,
 plt=c(.2,.8,.2,.8))

plot(cpep$age, cpep$Y, type="n", xlab="Age (years)",
ylab="log(concentration)"
 main="C-peptide Concentrations
\nLocal Quadratic Loess Smoother")

lines(smooth.spline(cpep.locl$x, cpep.locl$fit),
 lty=1,lwd=3)
lines(smooth.spline(cpep.locl$x, cpep.locl$upper),
 lty=3,lwd=3)
lines(smooth.spline(cpep.locl$x, cpep.locl$lower),
 lty=3,lwd=3)

C-peptide Concentrations
Local Quadratic Loess Smoother

log(concentration)

Age (years)