Some Notes on Elementary Statistical Considerations in Metrology

The basic Measurement Model (display (2.1), page 19 of V&J) is

\[y = x + \epsilon \]

where \(x \) is a "true value" of interest, \(\epsilon \) is a measurement error, and \(y \) is what is actually observed. We assume that \(\epsilon \) is a random variable with mean \(\beta \) (the gauge "bias") and standard deviation \(\sigma_{\text{measurement}} \). (So under this model, repeat observation of the same \(x \) does not produce the same \(y \).) Under this model, with \(x \) fixed

\[E_y = x + \beta \quad \text{and} \quad \text{Var}_y = \sigma_{\text{measurement}}^2 \]

On the other hand, with \(x \) random/varying and \(\epsilon \) independent of \(x \)

\[E_y = \mu_x + \beta \quad \text{and} \quad \text{Var}_y = \sigma_x^2 + \sigma_{\text{measurement}}^2 \]

For a sample of \(m \) observations on the same unit with sample mean \(\bar{y} \) and sample standard deviation \(s \),

\[E\bar{y} = x + \beta \quad \text{and} \quad E\bar{s}^2 = \sigma_{\text{measurement}}^2 \]

and basic statistical methods can be applied to \(\bar{y} \) and \(s \) to produce inferences of metrological interest. Consider first the usual confidence limits for a mean

\[\bar{y} \pm t \frac{s}{\sqrt{m}} \]

(\(t \) is based on \(m - 1 \) degrees of freedom.) These are limits for \(x + \beta \). If the gauge is known to be well-calibrated (have 0 bias), they are limits for \(x \), the single true value for the unit being measured. On the other hand, if \(x \) is known because the unit being measured is a standard, it then follows that limits

\[(\bar{y} - x) \pm t \frac{s}{\sqrt{m}} \]

can serve as confidence limits for the gauge bias, \(\beta \). Then consider the usual confidence limits for a standard deviation

\[\left(s \sqrt{\frac{(m-1)}{\chi^2_{m-1,\text{upper}}}}, s \sqrt{\frac{(m-1)}{\chi^2_{m-1,\text{lower}}}} \right) \]

In the present context, these are limits for estimates \(\sigma_{\text{measurement}} \). Finally, mostly for purposes of comparison with other formulas, we might also note that a standard error for (an estimated standard deviation of) \(s \) is

\[s \sqrt{\frac{1}{2(m-1)}} \]
For a sample of \(n \) observations, each on a different unit
\[
E[y] = \mu_x + \beta \quad \text{and} \quad E[s_y^2] = \sigma_x^2 + \sigma_{\text{measurement}}^2
\]
Applying the usual confidence limits for a mean,
\[
y \pm t \frac{s_y}{\sqrt{n}}
\]
(\(t \) is based on \(n - 1 \) degrees of freedom) are limits for \(\mu_x + \beta \), the mean of the distribution of true values for all units, plus bias. Note that the quantity \(s_y \) doesn’t directly estimate anything of fundamental interest. But since
\[
\sigma_x = \sqrt{(\sigma_x^2 + \sigma_{\text{measurement}}^2) - \sigma_{\text{measurement}}^2}
\]
an estimate of unit-to-unit variation (free of measurement noise) based on a sample of \(m \) observations on a single unit and a sample of \(n \) observations each on different units is (see display (2.3), page 20 of V&J):
\[
\hat{\sigma}_x = \max \left(0, s_y^2 - s^2 \right) \quad (\#)
\]
The best currently available confidence limits on \(\sigma_x \) are complicated. But some reasonably elementary very approximate limits (based on what is known as “the Satterthwaite approximation”) can be made. These are
\[
\left(\hat{\sigma}_x \sqrt{\frac{\hat{\nu}}{\hat{\nu} \chi^2_{\hat{\nu} \text{upper}}}}, \hat{\sigma}_x \sqrt{\frac{\hat{\nu}}{\hat{\nu} \chi^2_{\hat{\nu} \text{lower}}}} \right)
\]
for
\[
\hat{\nu} = \frac{\hat{\sigma}_x^4}{s_y^4} \left(\frac{1}{n - 1} + \frac{1}{m - 1} \right)
\]
And it is possible to produce a “standard error” (an estimated standard deviation) for the estimate (*) as:
\[
\hat{\sigma}_x \sqrt{\frac{1}{2\hat{\nu}}}
\]
(we’re here ignoring the fact that these formulas can produce nonsense in the case that \(\hat{\sigma}_x = 0 \)). These approximate confidence limits and standard error give at least some feeling for how much one has really learned about \(\sigma_x \) based on the two samples.