Lecture 24: Analysis of Block Designs

Example

Response: torque on knee
Conditions: placement of feet
Feet back, feet neutral, feet staggered
Experimental Material: men who have had knee replacement.

Reusing

Reuse the experimental material so that each piece of experimental material experiences all the treatments in a random order.

Reusing Material

Each person will sit in a chair and rise to a standing position.
Each person will do this three times, once with each foot position.
The order of the three foot positions will be randomized for each person.

Control of Outside Variables

Older males.
All have had total knee arthroplasty (replacement).
Height of chair constant.
All participants wear tennis shoes and comfortable clothing.

Randomization

Each participant experiences all three conditions (placement of feet) in a random order.

Randomization

Use three colored chips;
Red – Feet Neutral
White – Feet Back
Blue – Feet Staggered
Each participant draws chips without replacement to determine his order of treatments.
Lecture 24: Analysis of Block Designs

Replication

* There are 15 participants.
* The treatments (foot positions) are replicated 15 times.

Sample Size Tables

* Although constructed for completely randomized designs, the sample size tables can give us insight into the size of the detectable difference in treatment means.

Sample Size Tables

* 3 groups.
* Alpha = 0.05, Beta = 0.10
* n = 15 per group.
* Can detect between a 1.2 and 1.4 standard deviation difference in treatment sample means.

Informal Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>Neutral</th>
<th>Back</th>
<th>Staggered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>24.1 Nm</td>
<td>21.7 Nm</td>
<td>20.7 Nm</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.8582</td>
<td>2.9835</td>
<td>2.3719</td>
</tr>
</tbody>
</table>

Estimated Effects

* Neutral: 24.1 – 22.167 = 1.933
* Back: 21.7 – 22.167 = – 0.467
* Staggered: 20.7 – 22.167 = – 1.467
Estimated Effects

* Staggered reduces the torque the most, on average.
* Neutral increases the torque the most, on average.
* Are these effects statistically significant?

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>2</td>
<td>91.60</td>
<td>45.8</td>
<td>31.84</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subject</td>
<td>14</td>
<td>371.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>28</td>
<td>40.27</td>
<td>1.4383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Total</td>
<td>44</td>
<td>503.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test of Hypothesis

* H₀: all method effects are 0
* Hₐ: some method effects are not 0
* F = 31.84, P-value < 0.0001

Multiple Comparisons

LSD = t*√MS_{Error} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)

LSD = 2.04841\sqrt{1.4383} \frac{2}{\sqrt{15}}

= 2.04841(0.43792) = 0.897

Levels not connected by the same letter are significantly different.
Lecture 24: Analysis of Block Designs

Conclusion

* Each method produces a different mean torque which is statistically different from the other methods.

JMP

* Analyze – Fit Model
* Response – Torque
* Construct Model Effects
 * Method
 * Subject

Response Torque

<table>
<thead>
<tr>
<th>Summary of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSquare</td>
</tr>
<tr>
<td>RSquare Adj</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>Mean of Response</td>
</tr>
<tr>
<td>Observations (or Sum Wgts)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>C. Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Subject</td>
</tr>
</tbody>
</table>

Comment

* The summary RSquare and Model F-Ratio are not helpful in summarizing the effects of Methods on Torque.

Comment

* Method RSquare $\frac{91.6}{503.38} = 0.182$
* 18.2% of the variation in Torque is explained by the different Methods.

Comment

* The Subject term quantifies the variation in experimental material.
* The Error term quantifies the lack of consistency of Method effects across Subjects.
Lecture 24: Analysis of Block Designs

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>2</td>
<td>91.60</td>
</tr>
<tr>
<td>Subject</td>
<td>14</td>
<td>371.51</td>
</tr>
<tr>
<td>Interaction</td>
<td>28</td>
<td>40.27</td>
</tr>
<tr>
<td>Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. Total</td>
<td>44</td>
<td>503.38</td>
</tr>
</tbody>
</table>

Replication

*Although there is replication of the Methods (15 subjects do all three Methods) there is not replication of the Method by Subject combinations.

“Error”

*There is no way to estimate error due to different trials of Method for each Subject because each Subject uses each Method only once.

“Error”

*The Error term is actually the interaction between Method and Subject.
*In a Block design this interaction is assumed to be no different from random error.

Interpretation

*If the F test for treatment effects turns out to be not statistically significant, this could be due to no treatment effects or to no consistent treatment effects.

Interpretation

*If some treatments are better with some blocks and worse for others, the “Error” term will be large and so there may be no statistically significant consistent treatment effects.