Simple Linear Regression

- Example - mammals
- Response variable: gestation (length of pregnancy) days
- Explanatory: brain weight

Predicted Gestation = 85.25 + 0.30*Brain Weight

$R^2 = 0.372$, so only 37.2% of the variation in gestation is explained by the linear relationship with brain weight.

Regression Residuals

$\text{residual} = y - \hat{y}$

Those observations that do not follow the general trend will have residuals that are far from zero, either positive or negative.
Pattern in the Residuals

- Brain Weight between 0 g and 100 g
 - 25 negative, 10 positive residuals
- Brain Weight between 100 g and 500 g
 - 3 negative, 11 positive residuals

There may be a positive relationship between brain weight and the residuals for brain weights less than 500 g. This pattern could be due to the large brain weight mammal with a relatively short gestation.
Leverage

- A point with an extreme value for the explanatory variable can exert leverage on where the regression line will go.
- The leverage is quantified by something called the “hat” value.

Leverage in SLR

- In simple linear regression there is an equation for the “hat” value, h.

$$ h = \frac{1}{n} + \frac{(x_o - \bar{x})^2}{\sum (x - \bar{x})^2} $$
Comment

- Leverage is summarizing something about the explanatory variable, x.

Brain Weight:
- Mean: $\bar{x} = 107.2524$
- Std Dev: $s = 216.35854$

Sum of Squares for x

\[
s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}
\]

\[
(n - 1)s^2 = \sum (x - \bar{x})^2
\]

\[
(49)(216.35884)^2 = 2293739.874
\]

Leverage for “Man”

\[
x_0 = 1320
\]

\[
h = \frac{1}{50} + \frac{(1320 - 107.2524)^2}{2293739.874}
\]

\[
h = 0.02 + 0.641 = 0.661
\]
Rule of Thumb

- High Leverage Value if
 \[h > 2 \left(\frac{k+1}{n} \right) \]
- \(n = 50, \ k = 1, \)
 \[2 \left(\frac{k+1}{n} \right) = 2 \left(\frac{2}{50} \right) = 0.08 \]

Comment

- The leverage for “Man”, 0.661, is greater than 0.08.
- This indicates that the brain weight for “Man” is unusual and that “Man” is a high leverage point.

Statistical Significance

- Test statistic
 \[F = \frac{\left(\frac{h-1}{n} \right)}{\frac{1-h}{(n-k-1)}} \]
- Compute the P-value for an \(F \) distribution with \(k \) and \((n - k - 1) \) degrees of freedom.
Statistical Significance

- "Man"
 - $h = 0.661$, $p = 1$, $n = 50$

 $$F = \frac{(h - \frac{1}{n})/k}{(1-h)/(n-k-1)} = \frac{0.661 - 0.02}{1} / \frac{1 - 0.661}{48} = 90.76$$

Computing a P-value

- **JMP – Col – Formula**
 - $(1 - F \text{ Distribution}(F,k,n-k-1))$
 - For our example
 - $F=90.76$, $k=1$, $n-k-1=48$
 - P-value = 0.000000000001208

Conclusion – “Man”

- The P-value is much less than 0.001 (the Bonferroni corrected cutoff), therefore “Man” is a statistically significant high leverage point.
Other High Leverage Points

- The only other mammal with leverage above 0.08 is the Okapi.
- $h = 0.084$
- $F = 3.354$
- P-value $= 0.07325$

Conclusion - Okapi

- The P-value is greater than 0.001, although the Okapi has high leverage, that leverage is not statistically significant.

“Man”

- Extreme negative residual but that residual is not statistically significant.
- The extreme brain weight of “man” creates high leverage that is statistically significant.