Model Selection

- Response: Highway MPG
- Explanatory: 13 explanatory variables
 - Indicator variables for types of car
 - Sports Car, SUV, Wagon, Minivan
 - There is an indicator for Pickup but there are no pickups in the data.

Indicator Variables

- The indicator variable takes on the value 1 if it is that kind of vehicle and 0 otherwise.
- If all four indicator variables are 0, then the vehicle is a Sedan.

Explanatory Variables

- Indicator variables for All Wheel and Rear Wheel drive.
- If both indicator variables are 0, then the vehicle has Front Wheel drive.
Explanatory Variables
- Engine size (liters)
- Cylinders (number)
- Horsepower
- Weight (pounds)
- Wheel Base (inches)
- Length (inches)
- Width (inches)

Forward Selection
- Fit Model - Personality: Stepwise
- Y, Response - Highway MPG
- Put all 13 variables into the Construct Model Effects box.
- Click on Run Model

Stepwise Fit
- Stopping Rule: P-value Threshold
 - Prob to Enter = 0.050
 - Prob to Leave = 0.050
- Direction: Forward
- Click on Go
Forward Selection

- Three variables are added
 - Weight
 - Horsepower
 - Wheel Base
- All variables added are still statistically significant.

Forward Selection

- Model with Weight, Horsepower and Wheel Base.
 - $R^2 = 0.6543$, adj $R^2 = 0.6435$
 - $RMSE = 3.635$
 - AICc = 548.45, BIC = 560.84
 - $C_p = 12.1222$
Stepwise Fit

- Stopping Rule: P-value Threshold
 - Prob to Enter = 0.050
 - Prob to Leave = 0.050
- Direction: Backward
 - Enter All
 - Click on Go

Backward Selection

- Eight variables are removed
- All variables left are statistically significant.
Backward Selection
- Model with SUV, Minivan, All Wheel, Cylinders and Horsepower.
 - $R^2 = 0.6874$, adj $R^2 = 0.6708$
 - RMSE = 3.493
 - AICc = 542.96, BIC = 559.98
 - $C_p = 6.1511$

The final model from Backward selection is better than the final model from Forward selection. It has a higher R^2 value, higher adj R^2 value, lower RMSE, AICc, BIC and C_p value.

Mixed Selection (Forward)
- Stopping Rule: P-value Threshold
 - Prob to Enter = 0.050
 - Prob to Leave = 0.050
- Direction: Mixed
- Click on Go
Mixed Selection (Forward)

- Three variables are added
 - Weight
 - Horsepower
 - Wheel Base
- No variables are removed.
- This is the same as with Forward Selection.

Mixed Selection (Backward)

- Stopping Rule: P-value Threshold
 - Prob to Enter = 0.050
 - Prob to Leave = 0.050
- Direction: Mixed
 - Enter All
 - Click on Go
Mixed Selection (Backward)

- Eight variables are removed
- No variables are added.
- This is the same as with Backward Selection.

All Possible Models

- $2^{13} - 1 = 8191$ models possible.
- 1-variable models – listed in order of the R^2 value.
- 2-variable models – listed in order of the R^2 value.
- etc.
- 13-variable (full) model.
All Possible Models

- Can specify the maximum number of variables in a model.
- Can specify the maximum number of models displayed for each number of variables.

Model with all 13 variables has the highest R^2 value.
$R^2 = 0.7145$
Is this the “best” model?
No, several variables are not statistically significant.

Model with 7 variables has the lowest RMSE value.
- Sports Car, SUV, Minivan, All Wheel, Cylinders, Horsepower, Weight
- RMSE = 3.4282
Model with lowest RMSE

- Is this the “best” model?
- No, several variables are not statistically significant.
 - Sports Car: $F=3.847$, P-value=0.0529
 - Horsepower: $F=3.761$, P-value=0.0555
 - Weight: $F=3.653$, P-value=0.0591

All Possible Models

- Model with 7 variables has the lowest C_p value.
 - Sports Car, SUV, Minivan, All Wheel, Cylinders, Horsepower, Weight
 - $C_p = 4.7649$
 - This is the same model as the one with the lowest RMSE.

All Possible Models

- Model with 7 variables has the lowest AICc and BIC values.
 - Sports Car, SUV, Minivan, All Wheel, Cylinders, Horsepower, Weight
 - $\text{AICc} = 541.854$, $\text{BIC} = 563.301$
 - This is the same model as the one with the lowest RMSE and C_p.
Strategies

- Start with the “best” 1-variable model.
- Find a 2-variable model that beats it.
- Find a 3-variable model that beats the “best” 2-variable model.
- Etc.

Strategies

- Start with the full (13-variable) model. Is it “best”?
- Go to the 12-variable models. Are any of these “best”?
- Etc.

“Best” Model

- The 7-variable model with SUV, Minivan, All Wheel, Engine, Horsepower, Weight and Wheel Base
 Appears to be the “best” model.
Prediction Equation

Predicted Highway MPG = 30.74 - 3.15*SUV - 3.28*Minivan - 2.08*All Wheel - 1.65*Engine - 0.0226*Horsepower - 0.0029*Weight + 0.163*Wheel Base

Summary

- All variables add significantly.
- \(R^2 = 0.705 \), \(\text{adj } R^2 = 0.682 \)
- \(\text{RMSE} = 3.431 \)
- \(\text{AICc} = 542.01 \), \(\text{BIC} = 563.45 \)
- \(C_p = 4.9011 \)
Outlier

How do we determine if a potential outlier identified on the box plot is statistically significant?
Unusual Points in Regression

- Outlier for Regression
 - A point with an unusually large residual.

Unusual Points in Regression

- High leverage point.
 - A point with an extreme value for one, or more, of the explanatory variables

Influential Points

- Does a point influence where the regression line goes?
 - An outlier can.
 - A high leverage point can.
 - Are they statistically significant?