Model Selection

In multiple regression we often have many explanatory variables.
How do we find the “best” model?

Model Selection

How can we select the set of explanatory variables that will explain the most variation in the response and have each variable adding significantly to the model?

Cruising Timber

Response: Mean Diameter at Breast Height (MDBH) of a tree.
Explanatory:
- $X_1 =$ Mean Height of Pines
- $X_2 =$ Age of Tract times the Number of Pines
- $X_3 =$ Mean Height of Pines divided by the Number of Pines
Forward Selection
- Begin with no variables in the model.
- At each step check to see if you can add a variable to the model.
 - If you can, add the variable.
 - If not, stop.

Forward Selection – Step 1
- Select the variable that has the highest correlation with the response.
- If this correlation is statistically significant, add the variable to the model.

JMP
- Multivariate Methods
- Multivariate
- Put MDBH, X₁, X₂, and X₃ in the Y, Columns box.
The explanatory variable X_3 has the highest correlation with MDBH.

$r = 0.8404$

The correlation between X_3 and MDBH is statistically significant.

Signif Prob < 0.0001, small P-value.
Step 1 - Action

- Fit the simple linear regression of MDBH on X_3.
- Predicted MDBH = $3.896 + 32.937 \times X_3$
- $R^2 = 0.7063$
- RMSE = 0.4117

SLR of MDBH on X_3

- Test of Model Utility
 - $F = 43.2886$, P-value < 0.0001
- Statistical Significance of X_3
 - $t = 6.58$, P-value < 0.0001
- Exactly the same as the test for significant correlation.

Can we do better?

- Can we explain more variation in MDBH by adding one of the other variables to the model with X_3?
- Will that addition be statistically significant?
Forward Selection - Step 2

- Which variable should we add, X_1 or X_2?
- How can we decide?
- Look at partial residual plots.
- Determine statistical significance.

Partial Residual Plots

- Look at the residuals from the SLR of Y on X_3 plotted against the other variables once the overlapping information with X_3 has been removed.

How is this done?

- Fit MDBH versus X_3 and obtain residuals - Resid(Y on X_3)
- Fit X_1 versus X_3 and obtain residuals - Resid(X_1 on X_3)
- Fit X_2 versus X_3 and obtain residuals - Resid(X_2 on X_3)
The residuals (unexplained variation in the response) from the SLR of MDBH on X_3 have the highest correlation with X_1 once we have adjusted for the overlapping information with X_3.
Statistical Significance

- Does X_1 add significantly to the model that already contains X_3?
 - $t = 2.88$, P-value = 0.0104
 - $F = 8.29$, P-value = 0.0104
 - Because the P-value is small, X_1 adds significantly to the model with X_3.

Summary

- Step 1 – add X_3
 - $R^2 = 0.706$
- Step 2 – add X_1 to X_3
 - $R^2 = 0.803$
 - Can we do better?

Forward Selection – Step 3

- Does X_2 add significantly to the model that already contains X_3 and X_1?
 - $t = -2.79$, P-value = 0.0131
 - $F = 7.78$, P-value = 0.0131
 - Because the P-value is small, X_2 adds significantly to the model with X_3 and X_1.
Summary

- Step 1 – add X_3
 - $R^2 = 0.706$
- Step 2 – add X_1 to X_3
 - $R^2 = 0.803$
- Step 3 – add X_2 to X_1 and X_3
 - $R^2 = 0.867$

Summary

- At each step the variable being added is statistically significant.
- Has the forward selection procedure found the “best” model?

“Best” Model?

- The model with all three variables is useful.
 - $F = 34.83$, P-value < 0.0001
- The variable X_3 does not add significantly to the model with just X_1 and X_2.
 - $t = 0.41$, P-value = 0.6844