Multiple Regression
- Response, Y (numerical)
- Explanatory variables, $X_1, X_2, \ldots X_k$ (numerical)
- New explanatory variables can be created from existing explanatory variables.

Home gas consumption
- Weekly gas consumption for a home in England.
- Average outside temperature.
- There are 26 weeks before insulation was added and 18 weeks after adding insulation.

Home gas consumption
- Response: Gas - gas consumption in 1000's of cubic feet.
- Explanatory: Temp - average outside temperature in °C.
Home gas consumption

- Response: Gas – gas consumption in 1000’s of cubic feet.
- Explanatory: Insul – a dummy or indicator variable
 - Insul = 0, before insulation was added
 - Insul = 1, after insulation was added

General Trend

- As outside temperature increases, gas consumption goes down.
- There is something funny about the plot.
Simple Linear Regression

- Predicted Gas = 5.33 - 0.216*Temp
- $R^2 = 0.328$, 32.8% of the variation in gas consumption can be explained by the linear relationship with outside temperature.

Temperature is statistically significant.
- $t = -4.53$, P-value < 0.0001
- RMSE = 0.853
Plot of Residuals

- The plot of residuals versus temperature does not appear to be a random scatter.
- There appears to be two groups of values.

How can we do better?

- If the two groups in the residual plot are associated with data from the un-insulated and insulated house, adding the dummy (indicator) variable `Insul` can explain more of the variation in gas consumption.
Multiple Regression Model

- Predicted Gas = 6.72 - 0.368*Temp - 1.79*Insul
- R² = 0.919, 91.9% of the variation in gas consumption can be explained by the multiple regression model with outside temperature and the dummy variable.

Interpretation

- For an un-insulated house (Insul = 0) when the average outside temperature is 0 ºC, the predicted amount of gas used is 6.72 (1000 cubic feet).

- Holding Insul constant, gas consumption drops, on average, 368 cubic feet for every 1 ºC increase in average outside temperature.
Interpretation

- This model is a no interaction model because the relationship between gas and temperature has the same slope for both the un-insulated and insulated house.

Interpretation

- Holding outside temperature constant, changing Insul from 0 to 1 (going from an un-insulated house to an insulated house), the amount of gas used drops 1.79 (1000 cubic feet), on average.

Interpretation

- The dummy variable changes the level of the gas usage on a day when the outside temperature is 0 °C.
Two regression lines

- Before insulation
 - Predicted Gas = 6.72 - 0.368*Temp
- After insulation
 - Predicted Gas = 4.93 - 0.368*Temp

Overlay Plot

Statistical Significance

- Model Utility
 - F = 233.48, P-value < 0.0001
 - The model with Temp and Insul is useful. The P-value for the test of model utility is very small.
- RMSE = 0.299
Statistical Significance

- **Temp**
 - $t = -19.47$, P-value < 0.0001
 - Because the P-value is small, Temp adds significantly to the model with Insul.

- **Insul**
 - $t = -17.33$, P-value < 0.0001
 - Because the P-value is small, Insul adds significantly to the model with Temp.

![Bivariate Fit of No Interaction Residual By Temp](image)