Forward Selection
- The Forward selection procedure looks to add variables to the model.
- Once added, those variables stay in the model even if they become insignificant at a later step.

Backward Selection
- The Backward selection procedure looks to remove variables from the model.
- Once removed, those variables cannot reenter the model even if they would add significantly at a later step.

Mixed Selection
- A combination of the Forward and Backward selection procedures.
- Starts out like Forward selection but looks to see if an added variable can be removed at a later step.
Mixed - Set up

Stepwise Fit for MDBH
Stepwise Regression Control
Stopping Rule
Prob to Enter: 0.25
Prob to Leave: 0.25
Direction: Mixed

SSE: 19
DFE: 0.7393276
RMSE: 0.0000
RSquare: 0.0000
RSquare Adj: 0.0000
Cp: 48.35699
AICc: 49.64257
BIC: 49.64257

Current Estimates
Step Parameter Action "Sig Prob" Seq SS Rsquare Cp p AICc BIC

Step History
Step Parameter Action "Sig Prob" Seq SS Rsquare Cp p AICc BIC

Stepwise Regression Control
- Direction - Mixed
 - Prob to Enter - controls what variables are added.
 - Prob to Leave - controls what variables are removed.
 - Prob to Enter = Prob to Leave

Current Estimates
- The current estimates are exactly the same as with the Forward selection procedure.
- Clicking on Step will initiate the Mixed procedure that starts like the Forward procedure.
Current Estimates – Step 1

- X_3 is added to the model
- Predicted MDBH = 3.896 + 32.937X_3
- $R^2=0.7063$
- $RMSE = \sqrt{\text{MSE}} = \sqrt{3.0502499/18} = 0.4117$

Current Estimates – Step 1

- By clicking on Step you will invoke the Backward part of the Mixed procedure.
- Because X_3 is statistically significant and is the only variable in the model, clicking on Step will not do anything.
Stat 301– Lecture 27

Current Estimates – Step 1
- Of the remaining variables not in the model, X_1 will add the largest sum of squares if added to the model.
 - $SS = 1.000$
 - "F Ratio" = 8.294
 - "Prob>F" = 0.0104

JMP Mixed – Step 2
- Because X_1 will add the largest sum of squares and that addition is statistically significant, by clicking on Step, JMP will add X_1 to the model with X_3.

Stepwise Fit for MDBH

Stepwise Regression Control
- Stepping Rule: "Enter/Remove Threshold"
- Prob to Enter: 0.25
- Prob to Leave: 0.25

Current Estimates

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Action</th>
<th>"Sig Prod"</th>
<th>Beta</th>
<th>95% CI</th>
<th>p</th>
<th>AIC</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intercept</td>
<td>Entered</td>
<td>0.000</td>
<td>7.156</td>
<td>6.916 - 7.396</td>
<td>0.000</td>
<td>30.383</td>
<td>30.145</td>
</tr>
<tr>
<td>2</td>
<td>X_1</td>
<td>Entered</td>
<td>0.000</td>
<td>0.013</td>
<td>0.0000 - 0.026</td>
<td>0.500</td>
<td>30.383</td>
<td>30.145</td>
</tr>
</tbody>
</table>

Step History

- Step 1: Entered X_1
- Step 2: Entered X_2

- SSE: 2.000000
- DFE: 17
- RMSE: 0.8030
- R-Square: 0.779
- R-Square Adj: 0.778
- Cp: 3
- AIC: 21.8472
- BIC: 23.1834

- SS: 0.000
- "F Ratio": 8.294
- "Prob>F": 0.0104
Current Estimates – Step 2

- X_1 is added to the model
- Predicted MDBH = 3.143 + 0.0314*X_1 + 22.954*X_3
 - $R^2=0.8026$
 - $\text{RMSE} = \sqrt{\text{MSE}} = \sqrt{2.0500859/17} = 0.3473$

By clicking on Step you will invoke the Backward part of the Mixed procedure.

Because X_3 and X_1 are statistically significant, clicking on Step will not do anything.

Of the remaining variables not in the model X_2 will add the largest sum of squares if added to the model.

- $SS = 0.671$
- "F Ratio" = 7.784
- "Prob>F" = 0.0131
JMP Mixed – Step 3

Because X_2 will add the largest sum of squares and that addition is statistically significant, by clicking on Step, JMP will add X_2 to the model with X_3 and X_1.

JMP Mixed – Step 3

- X_2 is added to the model
- Predicted $\text{MDBH} = 3.236 + 0.0974 \times X_1 - 0.000169 \times X_2 + 3.467 \times X_3$
- $R^2 = 0.8672$
- $\text{RMSE} = \sqrt{\text{MSE}} = \sqrt{1.3791191/16} = 0.2936
Current Estimates – Step 3

- By clicking on Step you will invoke the Backward part of the Mixed procedure.
- Note that variable X₃ is no longer statistically significant and so it will be removed from the model when you click on Step.

Stopping Rule:

<table>
<thead>
<tr>
<th>P-value Threshold</th>
<th>Prob to Enter</th>
<th>Prob to Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Direction: Mixed

Stepwise Regression Control

<table>
<thead>
<tr>
<th>SS</th>
<th>DFE</th>
<th>RMSE</th>
<th>R²</th>
<th>R² Adjusted</th>
<th>Cp</th>
<th>s</th>
<th>AICc</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3938931</td>
<td>17</td>
<td>0.8658</td>
<td>0.8500</td>
<td>14.15158</td>
<td>15.46784</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Entered</th>
<th>Estimate</th>
<th>t-stat</th>
<th>p-value</th>
<th>SS</th>
<th>Adj R²</th>
<th>Cp</th>
<th>s</th>
<th>AICc</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Entered</td>
<td>3.26051366</td>
<td>1</td>
<td>1</td>
<td>0.000</td>
<td>19.388</td>
<td>2</td>
<td>3</td>
<td>28.1345</td>
<td>26.6473</td>
</tr>
<tr>
<td>X₁</td>
<td>Entered</td>
<td>0.10691347</td>
<td>1.32e-8</td>
<td>0.0104</td>
<td>0.8026</td>
<td>9.7843</td>
<td>3</td>
<td>4</td>
<td>23.1835</td>
<td>21.8672</td>
</tr>
<tr>
<td>X₂</td>
<td>Entered</td>
<td>-0.0001898</td>
<td>0.6844</td>
<td>0.0131</td>
<td>0.8672</td>
<td>4</td>
<td>0.67597</td>
<td>4</td>
<td>18.2505</td>
<td>17.5575</td>
</tr>
<tr>
<td>X₃</td>
<td>Removed</td>
<td>0.00015884</td>
<td>0.000</td>
<td>0.6844</td>
<td>0.8658</td>
<td>2.1714023</td>
<td>3</td>
<td>5</td>
<td>15.46784</td>
<td>14.15158</td>
</tr>
</tbody>
</table>

Step History

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Action</th>
<th>Estimate</th>
<th>t-stat</th>
<th>p-value</th>
<th>SS</th>
<th>Adj R²</th>
<th>Cp</th>
<th>s</th>
<th>AICc</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intercept</td>
<td>Entered</td>
<td>3.26051366</td>
<td>1</td>
<td>1</td>
<td>0.000</td>
<td>19.388</td>
<td>2</td>
<td>3</td>
<td>28.1345</td>
<td>26.6473</td>
</tr>
<tr>
<td>2</td>
<td>X₁</td>
<td>Entered</td>
<td>0.10691347</td>
<td>1.32e-8</td>
<td>0.0104</td>
<td>0.8026</td>
<td>9.7843</td>
<td>3</td>
<td>4</td>
<td>23.1835</td>
<td>21.8672</td>
</tr>
<tr>
<td>3</td>
<td>X₂</td>
<td>Entered</td>
<td>-0.0001898</td>
<td>0.6844</td>
<td>0.0131</td>
<td>0.8672</td>
<td>4</td>
<td>0.67597</td>
<td>4</td>
<td>18.2505</td>
<td>17.5575</td>
</tr>
<tr>
<td>4</td>
<td>X₃</td>
<td>Removed</td>
<td>0.00015884</td>
<td>0.000</td>
<td>0.6844</td>
<td>0.8658</td>
<td>2.1714023</td>
<td>3</td>
<td>5</td>
<td>15.46784</td>
<td>14.15158</td>
</tr>
</tbody>
</table>

Current Estimates – Step 4

- X₃ is removed from the model
- Predicted MDBH = 3.2605 + 0.1069*X₁ – 0.0001898*X₂
- R²=0.8658
- RMSE = \sqrt{MSE} = \sqrt{1.3938931/17} = 0.2863
Current Estimates - Step 4

- Because X_1 and X_2 add significantly to the model they cannot be removed.
- Because X_3 will not add significantly to the model it cannot be added.
- The Mixed procedure stops.

Response MDBH

<table>
<thead>
<tr>
<th>Summary of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSquare</td>
</tr>
<tr>
<td>RSquare Adj</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>Mean of Response</td>
</tr>
<tr>
<td>Observations (or Sum Wgts)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>C. Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>X1</td>
</tr>
<tr>
<td>X2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>X1</td>
</tr>
<tr>
<td>X2</td>
</tr>
</tbody>
</table>

Finding the “best” model

- For this example, the Forward selection procedure did not find the “best” model.
- The Backward and Mixed selection procedures came up with the “best” model.
Finding the “best” model
- None of the automatic selection procedures are guaranteed to find the “best” model.
- The only way to be sure, is to look at all possible models.

All Possible Models
- For k explanatory variables there are $2^k - 1$ possible models.
- There are k 1-variable models.
- There are $\binom{k}{2}$ 2-variable models.
- There are $\binom{k}{3}$ 3-variable models.

All Possible Models
- When confronted with all possible models, we often rely on summary statistics to describe features of the models.
- R^2: Larger is better
- adjR^2: Larger is better
- RMSE: Smaller is better
All Possible Models

Another summary statistic used to assess the fit of a model is Mallows C_p.

$$C_p = \left(\frac{SSE}{MSE_{full}} \right) - (n - 2p); \quad p = k + 1$$

MDBH Example

- Model with X_1 and X_2 ($p=3$)
- $SSE_p=1.3938931$
- $MSE_{Full}=0.08619$

$$C_p = \left(\frac{1.3938931}{0.0861949} \right) - (20 - 6) = 16.1714 - 14 = 2.1714$$

All Possible Models

- The smaller C_p is the “better” the fit of the model.
- The full model will have $C_p=p$.
All Possible Models

There are several criteria that incorporate the maximized value of the Likelihood function, \(L \). Which gives the probability of getting the sample data given the best estimates of the parameters in the model.

\[AIC = 2p - 2\ln(L) \]
\[AICc = AIC + \frac{2p(p+1)}{n - p - 1} \]

The smaller the AICc the “better” the fit of the model.

Another summary statistic is the Bayesian Information Criterion or BIC.

\[BIC = -2\ln(L) + p\ln(n) \]

The smaller the BIC the better the fit of the model.
JMP – Fit Model

- Personality – Stepwise – Run
- Red triangle pull down next to Stepwise Fit
 - All Possible Models
 - Maximum number of terms: 3
 - Number of best models: 3

All Possible Models

- Right click on table – Columns
- Check Cp

<table>
<thead>
<tr>
<th>Model</th>
<th>Number</th>
<th>R-squared</th>
<th>RSS</th>
<th>AICc</th>
<th>Cp</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>1</td>
<td>0.7063</td>
<td>0.4117</td>
<td>26.6473</td>
<td>0.1098</td>
<td>0.0</td>
</tr>
<tr>
<td>X1</td>
<td>1</td>
<td>0.5977</td>
<td>0.4818</td>
<td>32.9417</td>
<td>0.2000</td>
<td>0.0</td>
</tr>
<tr>
<td>X3</td>
<td>1</td>
<td>0.0593</td>
<td>0.7367</td>
<td>49.9281</td>
<td>0.3000</td>
<td>0.0</td>
</tr>
<tr>
<td>X1,X2</td>
<td>2</td>
<td>0.8658</td>
<td>0.2863</td>
<td>14.1516</td>
<td>0.4000</td>
<td>0.0</td>
</tr>
<tr>
<td>X1,X3</td>
<td>2</td>
<td>0.8026</td>
<td>0.3473</td>
<td>21.8672</td>
<td>0.5000</td>
<td>0.0</td>
</tr>
<tr>
<td>X2,X3</td>
<td>2</td>
<td>0.7451</td>
<td>0.3946</td>
<td>26.9777</td>
<td>0.6000</td>
<td>0.0</td>
</tr>
<tr>
<td>X1,X2,X3</td>
<td>3</td>
<td>0.8672</td>
<td>0.2936</td>
<td>17.5575</td>
<td>0.7000</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Ordered up to best 3 models up to 3 terms per model.
All Possible Models

- Lists all 7 models.
- 1-variable models – listed in order of the R^2 value.
- 2-variable models – listed in order of the R^2 value.
- 3-variable (full) model.

All Possible Models

- Model with X_1, X_2, X_3 – Highest R^2 value.
- Model with X_1, X_2 – Lowest RMSE, Lowest AICc, Lowest BIC, and lowest C_p.

Best Model

- Which is “best”?
- According to our definition of “best” we can’t tell until we look at the significance of the individual variables in the model.