Adding variables.

- There is a difference between assessing the statistical significance of a variable acting alone and a variable being added to a model.

Summary

- Test 1 by itself is statistically significant.
 - $t=2.97$, P-value=0.0074
- Test 2 by itself is not statistically significant.
 - $t=2.05$, P-value=0.0530

Summary

- Test 1 adds significantly to the model that already contains Test 2.
 - $t=2.52$, P-value=0.0205
- Test 2 does not add significantly to the model that already contains Test 1.
 - $t=1.51$, P-value=0.1469
Adding another variable

- Model with Test 1, Test 2, and Test 3.
- Can think about this as adding Test 3 to the model that already has Test 1 and Test 2 in it.
Change in R^2

- Model with Test 1, Test 2, and Test 3 – $R^2=0.526$
- Model with Test 1 and Test 2 – $R^2=0.367$
- Difference = $0.526 - 0.367 = 0.159$

Statistical Significance

- Is the change in R^2 statistically significant?
- Parameter Estimate for Test 3.
 - $t=-2.52$, P-value = 0.0209
- Effect Test for Test 3.
 - $F=6.343$, P-value = 0.0209

- Because the P-value (0.0209) is small (< 0.05) we would reject the null hypothesis that the slope parameter is zero.
- Test 3 adds significantly to the model with Test 1 and Test 2.
Other Tests

- Does Test 1 add significantly to the model with Test 2 and Test 3?
 - $t=3.52$, P-value=0.0023
 - $F=12.424$, P-value=0.0023

Statistical Significance

- Because the P-value (0.0023) is so small (< 0.05) we would reject the null hypothesis that the slope parameter is zero.
- Test 1 adds significantly to the model with Test 2 and Test 3.

Other Tests

- Does Test 2 add significantly to the model with Test 1 and Test 3?
 - $t=1.36$, P-value=0.1909
 - $F=1.840$, P-value=0.1909
Statistical Significance

- Because the P-value (0.1909) is not small (> 0.05) we would fail to reject the null hypothesis that the slope parameter is zero.
- Test 2 does not add significantly to the model with Test 1 and Test 3.

Unanswered Questions

- Is Test 3, by itself, statistically significant?
- Does Test 3 add significantly to the model with Test 1?
- Does Test 3 add significantly to the model with Test 2?

Test 1, Test 2 and Test 3

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>67628.99</td>
</tr>
<tr>
<td>Error</td>
<td>19</td>
<td>61018.75</td>
</tr>
<tr>
<td>C. Total</td>
<td>22</td>
<td>128647.74</td>
</tr>
</tbody>
</table>
Stat 301 – Lecture 15

Test 1 and Test 2

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>47259.34</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>81388.40</td>
</tr>
<tr>
<td>C. Total</td>
<td>22</td>
<td>128647.74</td>
</tr>
</tbody>
</table>

Test 1 and Test 3

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>61721.24</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>66926.50</td>
</tr>
<tr>
<td>C. Total</td>
<td>22</td>
<td>128647.74</td>
</tr>
</tbody>
</table>

Test 2 and Test 3

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>27729.65</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>100918.09</td>
</tr>
<tr>
<td>C. Total</td>
<td>22</td>
<td>128647.74</td>
</tr>
</tbody>
</table>