Chapters 8 and 9

Population Parameters: \(\mu \), \(\mu_y \)

Inference

Example

• What is the mean alcohol content of beer?
• A random sample of 10 beers is taken and the alcohol content (%) is measured.

• Population – all beers.
• Variable – alcohol content, %.
• Parameter – mean alcohol content of beer.
Sample Data – Alcohol (%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Alcohol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molson Canadian</td>
<td>5.19</td>
</tr>
<tr>
<td>Michelob Dark</td>
<td>4.76</td>
</tr>
<tr>
<td>Big Barrel Lager</td>
<td>4.32</td>
</tr>
<tr>
<td>Hamm’s</td>
<td>4.53</td>
</tr>
<tr>
<td>Tsingtao</td>
<td>4.79</td>
</tr>
<tr>
<td>Guinness Stout</td>
<td>4.27</td>
</tr>
<tr>
<td>O’Keefe Canadian</td>
<td>4.96</td>
</tr>
<tr>
<td>Olympia Lager</td>
<td>4.78</td>
</tr>
<tr>
<td>Miller Draft</td>
<td>4.85</td>
</tr>
<tr>
<td>O’Keefe Canadian</td>
<td>5.17</td>
</tr>
<tr>
<td>Michelob Dark</td>
<td>5.17</td>
</tr>
<tr>
<td>Big Barrel Lager</td>
<td>5.19</td>
</tr>
<tr>
<td>Hamm’s</td>
<td>5.17</td>
</tr>
<tr>
<td>Tsingtao</td>
<td>5.19</td>
</tr>
<tr>
<td>Guinness Stout</td>
<td>5.19</td>
</tr>
<tr>
<td>O’Keefe Canadian</td>
<td>5.19</td>
</tr>
<tr>
<td>Michelob Dark</td>
<td>5.19</td>
</tr>
</tbody>
</table>

Sample Summary

- Sample size: n = 10
- Sample mean: \(\bar{y} = 4.762 \)
- Sample standard deviation: s = 0.314

Sampling Distribution of \(\bar{y} \)
Summary

• Sampling from a population that follows a Normal Model.
• Distribution of the sample mean, \(\bar{y} \)
 – Shape: Normal model
 – Center: \(\mu \)
 – Spread: \(\text{SD}(\bar{y}) = \frac{\sigma}{\sqrt{n}} \)

Unknown, \(\sigma \)

• If we do not know the value of the population standard deviation we cannot standardize and cannot use table Z.

Unknown, \(\sigma \)

• We can use the sample standard deviation, \(s \), as an estimate of the population standard deviation, \(\sigma \).
Unknown, σ

- We can **NOT** continue to use the standard normal distribution or Table Z.
- Why?
95% Confidence?

- Simulation illustrating repeating the procedure.
- \[http://statweb.calpoly.edu/chance/applets/ConfSim/ConfSim.html\]

Quantitative Variable

- Confidence Interval for \(\mu \).

\[
\bar{y} - t^{*}\left(\frac{s}{\sqrt{n}}\right) \quad \text{to} \quad \bar{y} + t^{*}\left(\frac{s}{\sqrt{n}}\right)
\]

- \(t^{*} \) found in Table T, df = n – 1
Quantitative variable

- Test statistic.

 \[t = \frac{\bar{y} - \mu}{\frac{s}{\sqrt{n}}}, \text{Table T } \Rightarrow \text{P-value} \]

Confidence Interval for \(\mu \)

\[\bar{y} - t \cdot \left(\frac{s}{\sqrt{n}} \right) \text{ to } \bar{y} + t \cdot \left(\frac{s}{\sqrt{n}} \right) \]
\[df = n - 1 \]

Inference for \(\mu \)

- Do NOT use Table Z!
- Use Table T instead!