Proportions

- So far we have used the sample proportion, \(\hat{p} \), to make inferences about the population proportion \(p \).
- To do this we needed the distribution of \(\hat{p} \).

Distribution of \(\hat{p} \)

- Shape: Approximately Normal if conditions are met.
- Center: The mean is \(p \).
- Spread: The standard deviation is

\[
SD(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}
\]
Categorical Variable

When the response variable of interest is categorical, the parameter is the proportion of the population that falls in a particular category, \(p \).

Quantitative Variable

When the response variable of interest is quantitative, the parameter is the mean of the population, \(\mu \).

Means

We will use the sample mean, \(\bar{y} \), to make inferences about the population mean, \(\mu \). To do this we needed the distribution of \(\bar{y} \).
Simulation

www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

Simulation

- Simple random sample of size \(n=5 \).
- Repeat many times.
- Record the sample mean, \(\bar{y} \),
 to simulate the distribution of \(\bar{y} \).

Simulation

- Different samples will produce different sample means.
- There is variation in the sample means.
- Can we model this variation?
Population

- Shape: Basically normal
- Center: Mean, $\mu = 16$
- Spread: Standard Deviation, $\sigma = 5$

Distribution of \bar{y}

- $n = 5$
- Shape: Normal
- Center: Mean, $\mu = 16$
- Spread: Standard Deviation, $\sigma = 5$

$$SD(\bar{y}) = \frac{\sigma}{\sqrt{n}} = \frac{5}{\sqrt{5}} = 2.24$$