Example
\[\hat{p} = 0.56 \]
\[\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.56(0.44)}{1772}} = 0.012 \]
\[0.56 - 2(0.012) \text{ to } 0.56 + 2(0.012) \]
\[0.536 \text{ to } 0.584 \]

Interpretation

- We are 95% confident that the population proportion of all adults in the U.S. who believe abortion should be legal is between 53.6% and 58.4%.

Interpretation

- Plausible values for the population parameter \(p \).
- 95% confidence in the process that produced this interval.
95% Confidence

- If one were to repeatedly sample at random 1,772 adults and compute a 95% confidence interval for each sample, 95% of the intervals produced would contain, or capture, the population proportion p.

Simulation

http://statweb.calpoly.edu/chance/applets/Confsim/Confsim.html
Margin of Error

$$2SE(\hat{p}) = 2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Is called the Margin of Error (ME).
This is the furthest \(\hat{p} \) can be from \(p \), with 95% confidence.

Margin of Error

- What if we want to be 99.7% confident?

$$ME = 3SE(\hat{p}) = 3\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Margin of Error

$$ME = z^* SE(\hat{p}) = z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

<table>
<thead>
<tr>
<th>Confidence</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z^*)</td>
<td>1.282</td>
<td>1.645</td>
<td>2 or 1.96</td>
<td>2.326</td>
<td>2.576</td>
</tr>
</tbody>
</table>
Another Example

- “Do you favor or oppose setting stricter emission limits on power plants in order to address climate change?”

Another Example

n=1,504 randomly selected adults.

<table>
<thead>
<tr>
<th>Favor</th>
<th>Oppose</th>
<th>Unsure/Refused</th>
</tr>
</thead>
<tbody>
<tr>
<td>52%</td>
<td>28%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Another Example

- 90% confidence interval for p, the proportion of the population of all adults in the U.S. who would favor stricter emission limits on power plants in order to address climate change.
Calculation

\[\hat{p} = 0.52 \quad \text{SE}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.013 \quad z^* = 1.645 \]

\[0.52 - 1.645(0.013) \text{ to } 0.52 + 1.645(0.013) \]

\[0.52 - 0.021 \text{ to } 0.52 + 0.021 \]

\[0.499 \text{ to } 0.541 \]

What Sample Size?

- Conservative Formula

 - The sample size to be 95% confident that \(\hat{p} \), the sample proportion, will be within ME of the population proportion, \(p \).

 \[n = \frac{1}{\text{ME}^2} \]

Example

- Suppose we want to be 95% confident that our sample proportion will be within 0.02 of the population proportion.

 \[n = \frac{1}{\text{ME}^2} \Rightarrow n = \frac{1}{(0.02)^2} = 2,500 \]