Re-expressing Data

- Chapter 6 – Normal Model
 - What if data do not follow a Normal model?
- Chapters 8 & 9 – Linear Model
 - What if a relationship between two variables is not linear?

Re-expressing Data

- Re-expression is another name for changing the scale of (transforming) the data.
- Usually we re-express the response variable, Y.

Goals of Re-expression

- Goal 1 – Make the distribution of the re-expressed data more symmetric.
- Goal 2 – Make the spread of the re-expressed data more similar across groups.
Goals of Re-expression
- Goal 3 – Make the form of a scatter plot more linear.
- Goal 4 – Make the scatter in the scatter plot more even across all values of the explanatory variable.

Ladder of Powers
- Power: 2
 - Re-expression: y^2
 - Comment: Use on left skewed data.

Ladder of Powers
- Power: 1
 - Re-expression: y
 - Comment: No re-expression. Do not re-express the data if they are already well behaved.
Ladder of Powers

- Power: $\frac{1}{2}$
- Re-expression: \sqrt{y}
- Comment: Use on count data or when scatter in a scatter plot tends to increase as the explanatory variable increases.

Ladder of Powers

- Power: “0”
- Re-expression: $\log(y)$
- Comments: Not really the “0” power. Use on right skewed data. Measurements cannot be negative or zero.

Ladder of Powers

- Power: $-\frac{1}{2}, -1$
- Re-expression: $\frac{1}{\sqrt{y}}, \frac{1}{y}$
- Comments: Use on right skewed data. Measurements cannot be negative or zero. Use on ratios.
Goal 1 - Symmetry

- Data are obtained on the time between nerve pulses along a nerve fiber.
- Time is rounded to the nearest half unit where a unit is 1/50 of a second.
 - 30.5 represents $\frac{30.5}{50} = 0.61$ sec

Time – Nerve Pulses

- Distribution is skewed right.
- Sample mean (12.305) is much larger than the sample median (7.5).
- Many potential outliers.
- Data not from a Normal model.
Summary

- Time – Highly skewed to the right.
- Sqrt(Time) – Still skewed right.
- Log(Time) – Fairly symmetric and mounded in the middle.
 - Could have come from a Normal model.