Correlation

- Linear Association
 - How closely do the points on the scatter plot represent a straight line?
 - The correlation coefficient gives the direction of the linear association and quantifies the strength of the linear association between two quantitative variables.

Correlation

- Standardize y
 \[z_y = \frac{y - \bar{y}}{s_y} \]

- Standardize x
 \[z_x = \frac{x - \bar{x}}{s_x} \]
Correlation Coefficient

\[r = \frac{\sum z_x z_y}{n - 1} \]

\[r = \frac{\sum (x - \bar{x})(y - \bar{y})}{s_X s_Y (n - 1)} \]

Correlation Conditions

- Correlation applies only to quantitative variables.
- Correlation measures the strength of linear association.
- Outliers can distort the value of the correlation coefficient.

Correlation Coefficient

- Tar and nicotine
 \[r = \frac{\sum z_x z_y}{n - 1} = \frac{22.9796}{24} \]
 \[r = 0.9575 \]
Correlation Coefficient

There is a strong positive correlation, linear association, between the tar content and nicotine content of the various cigarette brands.

JMP

- Analyze – Multivariate methods
 - Multivariate
- Y, Columns
 - ▲ Tar (mg)
 - ▲ CO (mg)
Correlation Properties

- The sign of r indicates the direction of the association.
- The value of r is always between -1 and $+1$
- Correlation has no units.
- Correlation is not affected by changes of center or scale.

Correlation Cautions

- “Correlation” and “Association” are different.
 - Correlation – specific (linear).
 - Association – vague (trend).
- Don’t correlate categorical variables.

Correlation Cautions

- Don’t confuse correlation with causation.
 - There is a strong positive correlation between the number of crimes committed in communities and the number of 2nd graders in those communities.
- Beware of lurking variables.