Things you should know for the second exam.

Sample mean, \(x \): \(\bar{x} = \frac{\sum x}{n} \), Sample standard deviation, \(x \): \(s_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \)

Sample mean, \(y \): \(\bar{y} = \frac{\sum y}{n} \), Sample standard deviation, \(y \): \(s_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n-1}} \)

Sample correlation coefficient: \(r = \frac{\sum(x - \bar{x})(y - \bar{y})}{(n-1)s_x s_y} \)

Least squares regression line, e.g. line of best fit

estimated slope: \(b_1 = r \frac{s_y}{s_x} \)

estimated \(y \)-intercept: \(b_0 = \bar{y} - b_1 \bar{x} \)

equation: \(\hat{y} = b_0 + b_1 x \)

\(R^2 = (r)^2 = (\text{correlation coefficient})^2 \)

residual = \(y - \hat{y} \)

Know how to interpret slope, \(y \)-intercept and \(R^2 \) within the context of the problem.

Know what a plot of residuals versus the explanatory variable tells you about the fit of the least squares regression line.

Know the goals of re-expression of data. Know how the ladder of powers works.

Know the different methods for obtaining a sample. Know which are biased and which are not. Know how to randomly select a sample.

Be able to comment on control of outside variables, randomization, replication within an experiment, and blocking as they relate to experiments. Also be familiar with the ideas of a control group, placebos, blind and double blind and how to construct a diagram to illustrate how an experiment will be conducted.