Sampling Distribution of \hat{p}

- Shape: Approximately Normal
- Center: The mean is p.
- Spread: The standard deviation is $\sqrt{\frac{p(1-p)}{n}}$

Reese’s Pieces

- Sampling distribution of \hat{p}
 - Shape: Approximately Normal.
 - Center: The mean is 0.45
 - Spread: The standard deviation is $\sqrt{\frac{0.45(0.55)}{25}} = 0.099$
Conditions

- The sampled values must be independent of each other.
- The sample size, n, must be large enough.

Conditions

- 10% Condition
 - When sampling without replacement, the sample size should be less than 10% of the population size.
 - Reese’s Pieces – the number of pieces in the machine is much greater than 250.

Conditions

- Success/Failure Condition
 - The sample size must be large enough so that np and $n(1-p)$ are both bigger than 10.
 - Reeses Pieces – $np = 11.25$ and $n(1-p) = 13.75$ which are both greater than 10.
Comment

- To be able to use these results you need to know what the value of the population parameter, p, is.
- This is no problem in the Reese’s Pieces simulation because we can choose the population proportion of Orange pieces.

Change the Proportion

- Suppose instead of 45% Orange Reese’s Pieces in the machine we have only 35% Orange Reese’s Pieces.
- What is the sampling distribution of the sample proportion, \hat{p}?
Sampling Distribution of \hat{p}

- Shape: Approximately Normal
- Center: The mean is p.
- Spread: The standard deviation is $\sqrt{\frac{p(1-p)}{n}}$.

Reese’s Pieces

- Sampling distribution of \hat{p}
 - Shape: Approximately Normal.
 - Center: The mean is 0.35
 - Spread: The standard deviation is $\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.35(0.65)}{25}} = 0.095$

Inference

- For most populations we don’t know p, the population proportion.
- We can use the sampling distribution of \hat{p} to help us make inferences about the reasonable or plausible value of p.