Review

• The equation of a straight line
• \(y = mx + b \)
 – \(m \) is the slope – the change in \(y \) over the change in \(x \) – or rise over run.
 – \(b \) is the \(y \)-intercept – the value where the line cuts the \(y \) axis.

\[y = 3x + 2 \]

\[x = 0 \quad \Rightarrow \quad y = 2 \quad (y\text{-intercept}) \]
\[x = 3 \quad \Rightarrow \quad y = 11 \]
\[\text{Change in } y \text{ (+9) divided by the change in } x \text{ (+3) gives the slope, 3.} \]
Linear Regression

- Example: Tar (mg) and nicotine (mg) in cigarettes.
 - y, Response: Nicotine (mg).
 - x, Explanatory: Tar (mg).
 - Cases: 25 brands of cigarettes.

Correlation Coefficient

- Tar and nicotine
 \[r = \frac{\sum z_x z_y}{n - 1} = \frac{22.9437}{24} \]
 - $r = 0.956$

Linear Regression

- There is a strong positive linear association between tar and nicotine.
- What is the equation of the line that models the relationship between tar and nicotine?
Linear Model

- The linear model is the equation of a straight line through the data.
- A point on the straight line through the data gives a predicted value of y, denoted \hat{y}.

Residual

- The difference between the observed value of y and the predicted value of y, \hat{y}, is called the residual.
- $\text{Residual} = y - \hat{y}$
Line of “Best Fit”

• There are lots of straight lines that go through the data.
• The line of “best fit” is the line for which the sum of squared residuals is the smallest – the least squares line.

\[\hat{y} = b_0 + b_1 x \]

Least squares slope:
\[b_1 = r \frac{s_y}{s_x} \]

intercept:
\[b_0 = \bar{y} - b_1 \bar{x} \]

Least Squares Estimates

<table>
<thead>
<tr>
<th>Tar, x</th>
<th>Nicotine, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.92 mg</td>
<td>0.908 mg</td>
</tr>
<tr>
<td>4.636 mg</td>
<td>0.2812 mg</td>
</tr>
<tr>
<td>0.956</td>
<td></td>
</tr>
</tbody>
</table>