Algebra Review

• The equation of a straight line
 • \(y = mx + b \)
 – \(m \) is the slope – the change in \(y \) over the change in \(x \) – or rise over run.
 – \(b \) is the \(y \)-intercept – the value where the line cuts the \(y \) axis.

\[
\begin{align*}
y = 3x + 2 \\
x & = 0 \quad \Rightarrow \quad y = 2 \quad \text{(y-intercept)} \\
x & = 3 \quad \Rightarrow \quad y = 11 \\
\text{Change in } y (+9) \text{ divided by the change in } x (+3) \text{ gives the slope, 3.}
\end{align*}
\]
Linear Regression

- Example: Tar (mg) and nicotine (mg) in cigarettes.
 - \(y \), Response: Nicotine (mg).
 - \(x \), Explanatory: Tar (mg).
 - Cases: 25 brands of cigarettes.

Correlation Coefficient

- Tar and nicotine
 \[
 r = \frac{\sum z_x z_y}{n - 1} = \frac{+22.9437}{24}
 \]
 - \(r = +0.956 \)

Linear Regression

- There is a very strong positive linear association between tar and nicotine.
- What is the equation of the line that models the relationship between tar and nicotine?
Linear Model

- The linear model is the equation of a straight line through the data.
- A point on the straight line through the data gives a predicted value of y, denoted \hat{y}.

Residual

- The difference between the observed value of y and the predicted value of y, \hat{y}, is called the residual.
- Residual = $y - \hat{y}$
Line of “Best Fit”

- There are lots of straight lines that go through the data.
- The line of “best fit” is the line for which the sum of squared residuals is the smallest – the least squares line.

\[\hat{y} = b_0 + b_1x \]

Least squares slope: \[b_1 = r \frac{s_y}{s_x} \]

intercept: \[b_0 = \bar{y} - b_1\bar{x} \]

Least Squares Estimates

<table>
<thead>
<tr>
<th>Tar, x</th>
<th>Nicotine, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x} = 11.92) mg</td>
<td>(\bar{y} = 0.908) mg</td>
</tr>
<tr>
<td>(s_x = 4.636) mg</td>
<td>(s_y = 0.2812) mg</td>
</tr>
<tr>
<td>(r = 0.956)</td>
<td></td>
</tr>
</tbody>
</table>