Two steps-ahead (\(\hat{Z} \))

Forecast Error and Forecast Error Variances

Four quantities inside \([_ _ _ _]\), substitute value if known, forecast \(\hat{Z} \)

For quantities inside \([_ _ _ _]\), substitute value if known, forecast \(\hat{Z} \)

In general, steps-ahead:

\[
(\hat{Z} + \hat{Z} + 1)_{n} = \text{Var}(1)_{n} \hat{Z} \]

\[
1 + \hat{Z} + \hat{Z} + 1 + \hat{Z} + 1 = (1)_{n} \hat{Z} - \hat{Z} + \hat{Z} \]

\[
\cdots + \hat{Z} + \hat{Z} + 1 + \hat{Z} + 1 + \cdots + \hat{Z} + \hat{Z} + \hat{Z} = (1)_{n} \hat{Z} \]

\[
\hat{Z} + \hat{Z} + 1 + \hat{Z} + \hat{Z} + \hat{Z} = (1)_{n} \hat{Z} \]

\[
\hat{Z} + 1 + \hat{Z} + 1 + \hat{Z} + 1 + \cdots + \hat{Z} + \hat{Z} + \hat{Z} = (1)_{n} \hat{Z} \]

One step-ahead (\(\hat{Z} \))

The ARIMA model for \(Z \)

Forecast Errors and Forecast Error Variances

\[
\text{Var}(1)_{n} \hat{Z} = \sigma^{2} \]

\[
\hat{Z} = \theta_{0} \]

\[
\phi_{0} = \hat{Z} \]

\[
\psi_{0} = \hat{Z} \]

\[
\cdots \]

\[
\theta_{0} + \phi_{0} + \psi_{0} = \hat{Z} \]

\[
\hat{Z} = \theta_{0} \]

\[
\phi_{0} = \hat{Z} \]

\[
\psi_{0} = \hat{Z} \]

\[
\cdots \]

\[
\theta_{0} + \phi_{0} + \psi_{0} = \hat{Z} \]

The ARMAs for \(Z \) are

\[
\text{ARIMA Model Forecast Equation in Infinite MA Form} \]

\[
\text{ARIMA Model Forecast Equation in Infinite MA Form} \]

\[
\text{ARIMA Model Forecast Equation in Infinite MA Form} \]

\[
\text{ARIMA Model Forecast Equation in Infinite MA Form} \]

Forecasting Multiple Values From an ARIMA Model

Forecast Errors and Forecast Error Variances

Forecast Errors and Forecast Error Variances
AR Models and Forecasts for the Sunspot Process

AR Models—Part 1

The Wolfer Sunspot Numbers 1770-1869
Function esti

Output based on the Square Roots of the Wolfer Sunspot Numbers 1770-1869
AR(1) Model—Part 1

Residuals vs. Time
Time
Residuals
1780 1800 1820 1840 1860
-2 0 2 4

Wolfer Sunspots
Model: Component 1 :: ar: 1 on w = (Number of Spots)^0.5

Residual ACF
Lag
ACF
0 10 20 30
-1.0 0.0 0.5 1.0

Residuals vs. Fitted Values

Fitted Values
Residuals
2 4 6 8 10
-2 0 2 4

Normal Probability Plot
Residuals
Normal Scores
-2 -1 0 1 2
-2 -1 0 1 2

Index
Number of Spots
1780 1800 1820 1840 1860 1880
0 50 100 150

Wolfer Sunspots
1770-1869
Function esti

Output based on the Square Roots of the Wolfer Sunspot Numbers 1770-1869
AR(1) Model—Part 2

Actual Values * * * Fitted Values * * * Future Values
AR(2) Model—Part 1

Function and Output for the Wolfer Sunspot Numbers 1770-1869

AR(2) Model—Part 2

Function and Output for the Wolfer Sunspot Numbers 1770-1869

ARIMA(0,1,0) Model

Comparison of Models for the Support Data
Plot of AR(2) Model Log-likelihood Surface for the Wolfer Sunspot Numbers 1770-1869

Output based on the Square Roots of Residuals

AR(3) Model—Part 1

Sunspot Process and Eventual Forecasts
Higher-Order AR Models and Forecasts for the Segment 3

Module 8

Square Root Wolfer Sunspot Data
Plot of AR(2) Model Log-likelihood Surface for the Wolfer Sunspot Numbers 1770-1869

Normal Probability Plot

AR(3) Model—Part 2
For q_0, \cdots, q_q and p_0, \cdots, p_p for ϕ_1, \cdots, ϕ_q and ψ_1, \cdots, ψ_p we substitute estimates for parameters, giving approximate prediction intervals (for e_t). Substituting \hat{e}_t for e_t, and so on, when computing prediction intervals from data.

A 95% prediction interval for Z is $\hat{Z} \pm 1.96 \sqrt{\text{var}(\hat{Z})}$. For three steps-ahead it simplifies to

$$\hat{Z} + 1.96 \sqrt{\hat{Z}^2}$$

For two steps-ahead the simpler to

$$\hat{Z} + 1.96 \hat{Z}$$

For one step-ahead the simpler to

$$\hat{Z} + 1.96 \sqrt{\text{var}(\hat{Z})}$$

A 95% prediction interval for Z^t steps-ahead is

$$\hat{Z} + 1.96 \sqrt{\text{var}(\hat{Z})}$$

ARIMA(p,d,q) Model—Part 1

The output square number 1770-1869

Function q_0 could be based on the mean roots of ϕ_1, \cdots, ϕ_q.
For nonstationary time series, things are more complicated, but the forecast-error variance grows without bound because the weights do not sum to one. For stationary time series, from the equations above, we can see that because

\[\lim_{n \to \infty} \sum_{i=-n}^{n} a_i = 1 \]

the forecast-error variance grows without bound. For nonstationary time series, things are more complicated.

\[(\varphi(z))^{-1} = (\cdots + \psi_3 + \psi_2 + 1)z^{-1} \]

In the end, we have

\[\varphi(z) = (1 - \varphi_1 z^{-1} - \cdots - \varphi_p z^{-p}) \]

because the weights die down, the long-run forecast is

\[\cdots + \psi_1 z^{-2} + \psi_0 z^{-1} + \varphi_1 z^{-1} + \cdots + 0 + 0 = \lim_{n \to \infty} (\theta_n)z \]

For stationary time series, from

Eventual (long-run) Forecasts
With fewer parameters, forecasts less sensitive to deviations.

Model may be applied more generally to similar processes.

Reasons for Needing a Long Realization

- Can check model stability by dividing data in two and analyzing.
- Possible to check forecasts by withholding recent data.
- Fewer estimation problems (likelihood function behaves better).
- Are known (good approximation of realization is large).
- Approximate prediction intervals assume the parameters are known (good approximation of realization is large).
- Estimate seasonal pattern (need at least 4 or 5 seasonal periods).
- Estimate correlation structure (i.e., the ACF and PACF).

Comparison of Models for the Savings Rate Data

<table>
<thead>
<tr>
<th>Model</th>
<th>p</th>
<th>d</th>
<th>q</th>
<th>AIC</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>224.5</td>
<td>0.32</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>224.0</td>
<td>0.24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>218.4</td>
<td>0.70</td>
</tr>
</tbody>
</table>

ARIMA(0,1,1) Model

Trend

Some Practical Considerations and Deterministic Segment 5