Module 6
Methods for Nonstationary Time Series
Transformations, Differencing, and ARIMA Model
Identification

Class notes for Statistics 451: Applied Time Series
Iowa State University
Copyright 2015 W. Q. Meeker.

Dealing with Nonconstant Variance

- A common reason: Variability increases with level
- \[\text{Range} = \text{Maximum} - \text{Minimum} \]

Example: If the standard deviation of sales is 10% of level,
then for sales \(\geq 100 \), we have

Variability increasing with level

Number of international airline passengers from 1949 to 1960

<table>
<thead>
<tr>
<th>Year</th>
<th>Thousands of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>100</td>
</tr>
<tr>
<td>1951</td>
<td>200</td>
</tr>
<tr>
<td>1953</td>
<td>300</td>
</tr>
<tr>
<td>1955</td>
<td>400</td>
</tr>
<tr>
<td>1957</td>
<td>500</td>
</tr>
<tr>
<td>1959</td>
<td>600</td>
</tr>
</tbody>
</table>

Plot of the airline data along with a range-mean plot

<table>
<thead>
<tr>
<th>Time</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>100</td>
</tr>
<tr>
<td>1950</td>
<td>200</td>
</tr>
<tr>
<td>1951</td>
<td>300</td>
</tr>
<tr>
<td>1952</td>
<td>400</td>
</tr>
<tr>
<td>1953</td>
<td>500</td>
</tr>
<tr>
<td>1954</td>
<td>600</td>
</tr>
<tr>
<td>1955</td>
<td>700</td>
</tr>
<tr>
<td>1956</td>
<td>800</td>
</tr>
<tr>
<td>1957</td>
<td>900</td>
</tr>
<tr>
<td>1958</td>
<td>1000</td>
</tr>
<tr>
<td>1959</td>
<td>1100</td>
</tr>
<tr>
<td>1960</td>
<td>1200</td>
</tr>
<tr>
<td>1961</td>
<td>1300</td>
</tr>
</tbody>
</table>

International Airline Passengers

<table>
<thead>
<tr>
<th>Time</th>
<th>w= Thousands of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>100</td>
</tr>
<tr>
<td>1950</td>
<td>200</td>
</tr>
<tr>
<td>1951</td>
<td>300</td>
</tr>
<tr>
<td>1952</td>
<td>400</td>
</tr>
<tr>
<td>1953</td>
<td>500</td>
</tr>
<tr>
<td>1954</td>
<td>600</td>
</tr>
<tr>
<td>1955</td>
<td>700</td>
</tr>
<tr>
<td>1956</td>
<td>800</td>
</tr>
<tr>
<td>1957</td>
<td>900</td>
</tr>
<tr>
<td>1958</td>
<td>1000</td>
</tr>
<tr>
<td>1959</td>
<td>1100</td>
</tr>
<tr>
<td>1960</td>
<td>1200</td>
</tr>
<tr>
<td>1961</td>
<td>1300</td>
</tr>
</tbody>
</table>

Transformations
Nonconstant Variance and an Introduction to
Segment 1
Module 6
Plot of the logarithms of the airline data along with a range-mean plot and plots of sample ACF and sample PACF.

\[\text{idem(airline.tsd,gamma=0)} \]

<table>
<thead>
<tr>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>0.35</td>
</tr>
<tr>
<td>5.4</td>
<td>0.40</td>
</tr>
<tr>
<td>5.6</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Range-Mean Plot

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
</tr>
<tr>
<td>1950</td>
</tr>
<tr>
<td>1951</td>
</tr>
<tr>
<td>1952</td>
</tr>
<tr>
<td>1953</td>
</tr>
<tr>
<td>1954</td>
</tr>
<tr>
<td>1955</td>
</tr>
<tr>
<td>1956</td>
</tr>
<tr>
<td>1957</td>
</tr>
<tr>
<td>1958</td>
</tr>
<tr>
<td>1959</td>
</tr>
<tr>
<td>1960</td>
</tr>
<tr>
<td>1961</td>
</tr>
</tbody>
</table>

International Airline Passengers

\(w = \log(\text{Thousands of Passengers}) \)

ACF

<table>
<thead>
<tr>
<th>Lag</th>
<th>ACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

PACF

<table>
<thead>
<tr>
<th>Lag</th>
<th>Partial ACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Examples of Power Transformations

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>Transformation Possible Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1)</td>
<td>(Z_t \sim \frac{-1}{Z_t^* + m}) Very long upper tail</td>
</tr>
<tr>
<td>(-\frac{3}{3})</td>
<td>(Z_t \sim \frac{-1}{3} \sqrt{Z_t^* + m}) Slightly stronger than log</td>
</tr>
<tr>
<td>0</td>
<td>(Z_t \sim \log(Z_t^* + m)) Percentage change</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>(Z_t \sim \sqrt{Z_t^* + m}) Slightly weaker than log</td>
</tr>
<tr>
<td>1</td>
<td>(Z_t \sim Z_t^*) No transformation</td>
</tr>
<tr>
<td>2</td>
<td>(Z_t \sim (Z_t^* + m)^2) Possible application</td>
</tr>
</tbody>
</table>

Box-Cox Transformations and the Range-Mean Plot

1. Divide realization into groups (4 to 12 in each group).
2. Transform data with given \(\gamma \) (and perhaps \(m \))
3. Compute the mean and range in each group.
4. Plot the ranges versus the means.
5. Repeat for different values of \(\gamma \).

Box-Cox Family of Transformations

\[Z_t = \begin{cases} (Z_t^* + m)^{\gamma - 1} & \gamma \neq 0 \\ \log(Z_t^* + m) & \gamma = 0 \end{cases} \]

where \(Z_t^* \) is the original, untransformed time series, \(\gamma \) is primary transformation parameter, and \(\log \) is natural log (i.e., base \(e \)).

- For \(\gamma > 0 \), the \(\gamma \) in the denominator of the transformation has the same direction of trend as \(Z_t^* \) so that a plot of \(Z_t \) has the same direction of trend as \(Z_t^* \).
- Because the transformation is a continuous function in \(\gamma \), \(\log(Z_t^* + m) \) is a monotonically increasing function of \(Z_t^* \) as \(\gamma \) increases.
- For \(\gamma < 0 \), the denominator of the transformation is a decreasing function of \(Z_t^* \) and the transformation is thus a monotonically decreasing function of \(Z_t^* \).
- For \(\gamma = 0 \), the transformation is the identity function:
 \[Z_t = \log(Z_t^* + m) \]

Plot of the square roots (\(\gamma = 0.5 \)) of the airline data along with a range-mean plot and plots of sample ACF and sample PACF.

\[\text{idem(airline.tsd,gamma=.5)} \]
Nonconstant Level and Exponential Growth

Segment 3

Module 6

Effects of Doing a Box-Cox Transformation

from Lognormal to Normal
• Changes the shape of the distribution of the residuals (e.g.,
 centred trend versus linear trend)
• Changes the shape of a trend line (e.g., exponential or per-
 cented (as reflected in a range-mean plot)
• Changes the relationship between amount of variability and

usual Procedure for Deciding on the Use of a

4. Choose one tentative value of γ
 3. Try γ = −0.3333 (certain stronger transformations)
 2. Try γ = 0.3333 (moderate to strong transformations)
 1. Try γ = 1 (no transformation)

Box-Cox transformations useful in other kinds of data anal-
• Some computer programs attempt to estimate γ
 - 6.5, 3333 (moderate to strong transformations)
 - 3. Try γ = −0.3333 (certain stronger transformations)
 - 2. Try γ = 0.3333 (moderate to strong transformations)
 - 1. Try γ = 1 (no transformation)
Dealing with Nonconstant Level (Trend or Cycle)

- Fit a trend line (possibly after a transformation)
- Analyze differences (changes) instead of the actual time series \[e.g., \text{fit a model to } W_t = Z_t - Z_{t-1}\]
- If transformation and differencing is used always do the transformation first

Example of Exponential (Percentage) Growth

<table>
<thead>
<tr>
<th>Time</th>
<th>Number of Bacteria in a Dish</th>
<th>Difference</th>
<th>Amount</th>
<th>Log Amount</th>
<th>Log Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>NA</td>
<td>0.69</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1.39</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>2.08</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>2.77</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>16</td>
<td>3.47</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>32</td>
<td>4.16</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>64</td>
<td>4.85</td>
<td>.69</td>
<td></td>
</tr>
</tbody>
</table>

Differences of \(Z_t\) also grow exponentially!

Differences of log(\(Z_t\)) are constant (except for roundoff)

Plots showing the effect of a log transformation on exponential growth

- For small \(\beta_1\)
 \[100\% \text{ growth rate in percent is } \beta_1 \approx 100 \left[\frac{1 - e^{\beta_1}}{e^{\beta_1}} \right] \]
 \[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]
 \[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

Expontial (Percentage) Growth

Example of Exponential (Percentage) Growth

\[Z_t = \beta_0 + \beta_1 t\]

\[Z_t = \log(\beta_0 + \beta_1 t) = \log(\beta_0) + \log(\beta_1 + t)\]

where \(\beta_0 = \log(\beta_0)\) and \(\beta_1 = \log(\beta_1)\)

\[100 \% \text{ growth } = 100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + \beta_1 + 100)} \right] \]

\[100 \left[\frac{\log(1 + \beta_1)}{\log(1 + e^{\beta_1})} \right] \]
ARIMA Models Part 1: ARIMA(0, 1, 1)

Forecasting a Random Walk

If the model for \(W_t = (1 - B)Z_t \) is
\[
W_t = \theta_0 + \alpha_t,
\]
then
\[
Z_t = Z_t - 1 + \theta_0 + \alpha_t
\]
which is a "random walk" process. This is like an AR(1) model with \(\phi = 1 \) (note that model is nonstationary).

The only parameter of this model is \(\sigma_\alpha \).

The one-step-ahead point forecast for \(Z_t \) is
\[
\hat{Z}_t = Z_t - 1 + \theta_0
\]
and
\[
\text{One-step-ahead prediction interval for } Z_t \text{ is } [Z_t - \hat{\sigma}_Z, Z_t + \hat{\sigma}_Z]
\]
where \(\hat{\sigma}_Z \) is the estimated standard deviation of \(Z_t \).
To be equivalent to exponential smoothing, this model is also known as an exponentially weighted moving average (EWMA) and its forecast equations can be shown as:

\[W_t = (1 - \theta B) Z_t = Z_t - \theta Z_{t-1} + \theta a_t \]

This model is known as an exponentially weighted moving average (EWMA)model [a.k.a. IMA(1,1)].

Which is a transformation of ARIMA(1,1,1):

\[1 + \theta B \phi B = 1 \]

\[W_t = Z_t - (1 - \theta)(Z_{t-1} - \theta Z_{t-2} + \theta a_{t-1}) + \theta a_t \]

This model is also known as exponentially weighted moving average (EWMA) and its forecast equations can be shown as:

\[W_t = (1 - \theta B) Z_t = Z_t - \theta Z_{t-1} + \theta a_t \]

\[Z_t = Z_{t-1} - \theta Z_{t-2} + \theta a_{t-1} + a_t \]

This model is also known as exponentially weighted moving average (EWMA) and its forecast equations can be shown as:

\[W_t = (1 - \theta B) Z_t = Z_t - \theta Z_{t-1} + \theta a_t \]

\[Z_t = Z_{t-1} - \theta Z_{t-2} + \theta a_{t-1} + a_t \]

This model is also known as exponentially weighted moving average (EWMA) and its forecast equations can be shown as:

\[W_t = (1 - \theta B) Z_t = Z_t - \theta Z_{t-1} + \theta a_t \]

\[Z_t = Z_{t-1} - \theta Z_{t-2} + \theta a_{t-1} + a_t \]

This model is also known as exponentially weighted moving average (EWMA) and its forecast equations can be shown as:

\[W_t = (1 - \theta B) Z_t = Z_t - \theta Z_{t-1} + \theta a_t \]

\[Z_t = Z_{t-1} - \theta Z_{t-2} + \theta a_{t-1} + a_t \]
Module 6
Segment 6
ARIMA Models Part 2: ARIMA(1, 1, 0)

Function iden
Output for Simulated Series D
Mean
Range

-5 0 5 10 15 20
4 6 8 10 12 14 16

Range-Mean Plot
time

w
0 50 100 150 200 250 300

Simulated data
w= Data

ACF
Lag
ACF
0 10 20 30
-1.0 0.0 0.5 1.0

PACF
Lag
Partial ACF
0 10 20 30
-1.0 0.0 0.5 1.0

Function iden
Output for the First Differences of Simulated Series D
time

w
0 50 100 150 200 250 300
-2 0 2

Simulated data
w= (1-B)^1 Data

ACF
Lag
ACF
0 10 20 30
-1.0 0.0 1.0

PACF
Lag
Partial ACF
0 10 20 30
-1.0 0.0 1.0

Special Case: ARIMA(1, 1, 0) Model
\[(1 - \phi L)(1 - L)Z_t = a_t \]
where
\[b = \phi(1 + \phi) \]
\[a_t = \phi^2 a_{t-2} + \phi^2 a_{t-1} + a_t \]

leading to
\[a_t = \phi^2 a_{t-2} + \phi^2 a_{t-1} + a_t \cdot \phi \]

which is nonstationary, \(\text{ARIMA}(2,0,0) \) or \(\text{AR}(2) \)

1. \(d = 0 \) to \(d = 1 \) most common; \(d = 2 \) not common; \(d \geq 3 \) generally not used

2. Plot data-versus-time, looking for trend and cycle
3. Consider the physical process (is the process changing?)
4. Examine the ACF for its smallest \(d \) such that ACF decreases
5. Fit AR(1) model and test \(H_0: \phi = 1 \) using
\[t = \frac{\hat{\phi} - 1}{\hat{\sigma}} \]

6. Need special tables (see Dickey and Fuller 1979 JASA)

7. Compare forecasts and prediction intervals.
Beware of differencing when differencing is not warranted.

Is there a better solution for fitting a model to Z_t?

Therefore, Z_t is nonstationary, but W_t is stationary. What kind of model does W_t have?

Let $t = 1, 2, \ldots$ be coded time.

An example of a nonstationary model.

Module 6

Segment 7
Beware of Over Differencing

Trivial model:

\[Z_t = \theta_0 + a_t, \quad a_t \sim \text{NID}(0, \sigma_a^2) \]

First difference of \(Z_t \):

\[W_t = (1 - B)Z_t = Z_t - Z_{t-1} = [\theta_0 + a_t] - [\theta_0 + a_{t-1}] = -a_t - a_{t-1} + a_t \]

is a noninvertible MA(1).

Second difference of \(Z_t \):

\[W_t = (1 - B)^2Z_t = Z_t - 2Z_{t-1} + Z_{t-2} = -2a_t - a_{t-1} + a_{t-2} + a_{t-3} \]

is a noninvertible MA(2).

When to Include \(\theta_0 \) in an ARIMA Model

• With no differencing (\(d = 0 \)) include a constant term in the model to allow estimation of the process mean.
• If there is differencing (\(d = 1 \)) then a constant term should be included only if there is need to or evidence of deterministic trend.
• With stationary \(W_t \), \(E(W_t) = 0 \), and \(Z_t = Z_t - 1 + \theta_0 + W_t \) the deterministic trend is \(\theta_0 \) each time period.
• Use of a constant term after differencing is rare. Check:
 - \(H_0: \mu_W = 0 \) by looking at \(t = (W - \mu)/\sigma_W \)
 - The physical nature of the data-generating process
• Situation is similar, but more complicated, with higher order differencing.

Exponential Smoothing

Using a Constant Term After Differencing and

Module 6
Relationship Between IMA(1,1) and Exponential Smoothing

IMA(1,1) model, unscrambled

\[Z_t = Z_{t-1} - \theta_1 a_{t-1} + a_t \]

IMA(1,1) forecast

\[\hat{Z}_t = Z_{t-1} - \hat{\theta}_1 \hat{a}_{t-1} = Z_{t-1} - \hat{\theta}_1 (Z_{t-1} - \hat{Z}_{t-1}) = (1 - \hat{\theta}_1) Z_{t-1} + \hat{\theta}_1 \hat{Z}_{t-1} \]

\[= \alpha Z_{t-1} + (1 - \alpha) \hat{Z}_{t-1} \]

where \(\alpha = 1 - \theta_1 \). Usually \(0.0 < \alpha < 1.0 \). This shows why the IMA(1,1) forecast equation is sometimes called "exponentially weighted moving average" (EWMA).

Issues in Applying Exponential Smoothing

- Choice of the smoothing constant \(\alpha \).
- Start-up value for the forecasts?
- Single, double, or triple exponential smoothing?
- Seasonality (Winter’s method)
- Prediction intervals or bounds?
- Winter's method
- Single exponential smoothing is equivalent to IMA(1,1).
- Double exponential smoothing is equivalent to IMA(2,2). . .

...