Using Accelerated Tests to Predict Service Life in Highly-Variable Environments

William Q. Meeker
Department of Statistics and
Center for Nondestructive Evaluation
Iowa State University
Ames, IA 50011
November 14, 1999

Work being done jointly with Luis A. Escobar (LSU)

Overview

- Accelerated testing—basic ideas
- Accelerated life tests and accelerated degradation tests
- Relating laboratory test results and field data and difficulties
- Deterministic and stochastic models
- Degradation and degradation models for deterministic and stochastic environments
- Relationship between degradation and failure time models
- Predictive mixtures (over time and environment) model for field failures
- Other issues and concluding remarks

Accelerated Tests Increasingly Important

Today’s manufactures need to develop newer, higher technology products in record time while improving productivity, reliability, and quality.

Important issues:
- Rapid product development.
- Rapidly changing technologies.
- More complicated products with more components.
- Higher customer expectations for better reliability.

The Arrhenius-Lognormal Regression Model

The Arrhenius-lognormal regression model is

\[\Pr[T(\text{temp}) \leq t] = \Phi_{\text{nor}} \left(\frac{\log(t) - \mu}{\sigma} \right) \]

where \(\mu = \beta_0 + \beta_1x \) where

\[x = \frac{11605}{\text{temp}K} = \frac{11605}{\text{temp}^\circ C + 273.15} \]

and \(\beta_1 = E_a \) is the activation energy.
The Arrhenius-Lognormal Log-Linear Regression Model Fit to the Device-A ALT Data

![Graph showing Arrhenius-Lognormal Log-Linear Regression Model](image)

Difficulty Establishing Correlation Between Lab Tests and Outdoor Weathering Tests for Organic Paints and Coatings

- Inadequate control/monitoring of laboratory accelerated test conditions [e.g., $e = (UV, \text{temperature}, \text{humidity})$].
- Inadequate control/monitoring of field testing environmental conditions at outdoor exposure sites.
- Testing at excessively high levels of accelerating stresses.
- Physical/chemical models that do not provide an adequate description of the relationship between degradation rates and experimental/environmental variables.
- Prediction models and methods that do not properly account for temporal environmental variability.

Service life prediction still relies on expensive, time-consuming outdoor testing in places like Florida and Arizona.

Device-B Power Drop (Meeker et al. 1998) Accelerated Degradation Test Results at 150°C, 195°C, and 237°C (Use conditions 80°C)

![Graph showing Device-B Power Drop](image)

Scale Accelerated Failure Time Model

- The particularly simple Scale Accelerated Failure Time (SAFT) model relates failure time $T(e)$ at environmental conditions e to the failure time $T(e_0)$ at environmental conditions e_0 through the relationship

 $$T(e) = T(e_0) \cdot A^F(e)$$

 where $A^F(e) > 0$ is a time-invariant scale factor that depends on e and (e_0).

- AFT model implies proportional quantiles

 $$t_p(e) = t_p(e_0) \cdot A^F(e), \quad 0 < p < 1.$$

 and cdfs are related by

 $$Pr[T \leq t; e] = Pr[T \leq A^F(e) \cdot t; e_0].$$

Degradation Path

- Degradation, $D(t)$, usually depends on environmental variables like UV, temp, and RH, that vary over time, say according to a multivariable profile $e(t) = [UV, \text{temp}, \text{RH}, \ldots]$.

- Failure usually defined as the first time at which $D(t)$ crosses a threshold.

- Laboratory tests are conducted in well-controlled environments (usually holding variables like UV, temperature, and humidity constant).

- Interest often centers, however, on life in a variable environment.
Basic Approach

- Model degradation rates as a function of environmental conditions.
- Model/characterize temporal environmental variability for a given location.
- Use the environment model to drive the degradation rate model to provide a model/predictions for cumulative degradation.
- Aggregate/average product failures over multiple environments.

Deterministic and Stochastic Models

Approach: First develop deterministic physical/chemical models. Then add random and stochastic process distributions, as needed, to account for important process variabilities (unit-to-unit, stochastic over time, or both).

- The environmental conditions e are constant over time.
- The environmental conditions $e = e(t)$ have a variable but deterministic path in time (i.e., a step-stress time function).
- The environmental conditions $e = e(t)$ are random in time (e.g., outdoor/real-world conditions) and the distribution of sample paths can be described by a (multivariate) stochastic process model with parameters θ_e for $e(t)$.

Degradation in a Nonconstant Environment

- For a given environmental profile, cumulative degradation for a unit can be obtained from

 $$ D(t) = \int_0^t dD[\tau, e(\tau)] d\tau $$

 $$ = \int_0^t dD[\tau; \text{temp}(\tau), \text{RH}(\tau), \ldots] d\tau $$

- In general, these cumulative degradation paths differ from unit to unit due to:

 - Intrinsic unit-to-unit differences (raw materials, processing differences).
 - Extrinsic differences (e.g., in environmental profiles denoted by $e(\tau)$).

Model for Degradation of Organic Coatings and Paints

Jorgensen et al. (1996) using constant exposure accelerated laboratory tests identified a model similar to

$$ \frac{dD(t; \text{UV-B}, \text{temp}, \text{RH})}{dt} = A \times \text{UV-B} \times \exp\left(-\frac{E_a}{k_B \text{temp} R} \right) \times \exp(C \text{RH}) $$

where $D(t)$ is cumulative degradation, $dD(t; \text{UV-B}, \text{temp}, \text{RH})/dt$ is the degradation rate,

$$ L_{\text{UV-B}} = L_{\text{UV-B}}(t) = \int_{290 \text{ nm}}^{320 \text{ nm}} L_2(\lambda, t) d\lambda $$

is the instantaneous dose (in J/m²) in the UV-B spectral range ($\lambda = 290-320$ nm), temp K is temperature Kelvin, k_B is Boltzmann’s constant, and RH is relative humidity.

Simple Example: Deterministic Degradation with Nonconstant Temperature

- For a simple first-order chemical degradation process

 $$ A_1 \overset{R}{\rightarrow} A_2 $$

 $$ \frac{dA_1(t)}{dt} = -R(\text{temp}) A_1(t) \quad \text{and} \quad \frac{dA_2(t)}{dt} = R(\text{temp}) A_1(t) $$

 where the reaction rate constant R might have an Arrhenius relationship with temp and temp may be a function of time, t. That is temp = temp(t), so R can be viewed as a function of time, say $R[\text{temp}(t)]$.

- More generally, the rate constants (and thus degradation rates) could depend on other environmental variables like humidity and UV radiation characteristics (frequency and power).

Cumulative Degradation Model

- We first discuss temperature profiles which vary through time in a deterministic manner.

- Solving the system of differential equations gives:

 $$ A_1(t) = A_1(0) \exp\left(-\int_0^t R[\text{temp}(\tau)] d\tau \right) $$

 $$ A_2(t) = A_2(0) + A_1(0) \left[1 - \exp\left(-\int_0^t R[\text{temp}(\tau)] d\tau \right) \right] $$

- Suppose that the degradation level $A_2(t)$ is observable or is proportional to an observable performance measure.

- In some cases there might be a definition of failure based on the level of $A_2(t)$. Definition may be arbitrary, but should be purposeful.
Suppose that temperature changes from temp_1 to temp_2 at time t_1.

$$ R(t) = \begin{cases} R_1 = R(\text{temp}_1) & \text{when } 0 < t \leq t_1 \\ R_2 = R(\text{temp}_2) & \text{when } t_1 < t \leq t_2. \end{cases} $$

The degradation path can be written as

$$ A_2(t) = A_2(0) + A_1(0)[1 - \exp(-R_1 t)], \quad 0 < t \leq t_1 $$

$$ A_2(t) = A_2(t_1) + A_1(t_1)[1 - \exp(-R_2 (t - t_1))], \quad t_1 < t \leq t_2. $$

This generalizes to other piece-wise constant profiles:

$$ A_2(t) = A_2(t_{i-1}) + A_1(t_{i-1})[1 - \exp(-R_i (t - t_{i-1}))], \quad t_{i-1} < t \leq t_i, $$

where $i = 1, 2, \ldots$, $R_i = R(\text{temp}_i)$, temp_i is the temperature between t_{i-1} and t_i, and $t_0 = 0$.

\[\]
Degradation with a Random Temperature Profile

Temperature profile $\mu = 0.7$ AR(1) realizations with $\mu = 150^\circ C$ and $\sigma = 40^\circ C$.

$D(t)$ Power-Drop Cumulative Degradation Paths.

Population Failure Probability with Stochastic Environmental Profiles

- For the entire population of units, the failure probability is
 \[\Pr [A_2(t) \leq A_2; \theta_\beta \theta_\xi] = F(t; \theta_\beta \theta_\xi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr [A_2(t) \leq A_2; \beta, \theta_\xi] f(\beta; \theta_\beta) d\beta d\theta_\xi. \]

- In general, the failure-time distribution (failure time defined as the smallest $t \geq 0$ for which $D(t) \leq D_t$) is
 \[F(t; \theta_\beta \theta_\xi) = \Pr(T \leq t) = \int_{\beta} \Pr[D(t) \leq D_t; \beta, \theta_\xi] f(\beta; \theta_\beta) d\beta. \]

Unit-to-Unit or Region-to-Region Mixtures of Environmental Conditions

To simplify presentation, we consider a model for a population of units that was placed into service over a relatively short period of time (perhaps one month).

- The population of units in the field can be subdivided into k subpopulations of units, according to the environmental conditions to which they are exposed.
- There are $n_i = n(\theta_\xi_i)$ units in subpopulation i having environmental conditions described by θ_ξ_i, $i = 1, 2, \ldots, k$.
- The total number of units in the field is $n = \sum_{i=1}^{k} n_i$.
- The relative frequency (or proportion) of units at conditions θ_ξ_i will be denoted by $f_i = n_i/n$, $i = 1, \ldots, k$.

Mixture Population Failure-Time Distribution

- For subpopulation i with environment conditions θ_ξ_i occurring with relative frequency $f_i, i = 1, \ldots, k$,
 \[\Pr(T \leq t) = \sum_{i=1}^{k} \Pr(T \leq t; \theta_\xi_i) \times f_i \]
 where $n_i = n \times f_i$ is the number of units on test at environmental conditions θ_ξ_i.

- Suppose that n is the total number of exposed units. For the general time transformation model, the expected number of units failed by time t is
 \[E[N(t)] = n \times \Pr(T \leq t) \]
 where $N(t)$ is the number of failures by time t.

- Aggregate over multiple time cohorts for product entering the field over time.
Other Issues

- More complicated cumulative degradation models
 - Multi-step reactions may (probably will have) different activation energies.
 - May encounter path dependence in which degradation rate depends on history (can detect with step stress experiments)
- Effects of other environmental factors (e.g., acid rain, presence of moisture, mechanical stresses, etc.)
- Methods of time series modeling and simulation.
- Feasible computational methods.

Concluding Remarks

- Accelerated testing provides interesting scientific and statistical challenges.
- Modeling (physical and statistical) is a difficult but essential part of accelerated testing.
- Using degradation modeling and data will be important for most applications.
- In highly variable environments, average environmental conditions will not be sufficient to predict product life.