Department of Aerospace Engineering

Hong Group Mechanics of Materials and Structures

[70] D. Yavas, X. Shang, W. Hong, and A. F. Bastawros, Utilization of nanoindentation to examine bond line integrity in adhesively bonded composite structures. I. J. Fracture 204 (1), 101-112 (2017) DOI: 10.1007/s10704-016-0165-z.
[69] H. Guo, X. Liu, F. Xue, L.-Q. Chen, W. Hong, and X. Tan, Disrupting long-range polar order with an electric field. Phys. Rev. B 93 (17), 174114 (2016) DOI: 10.1103/PhysRevB.93.174114.
[68] M. A. Ali, W. Hong, S. Oren, Q. Wang, Y. Wang, H. Jiang, and L. Dong, Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors. RSC Advances 6(71) 67184-67195 (2016) DOI: 10.1039/C6TB02178F.
[67] Z. J. Wang, C. N. Zhu, W. Hong, Z. L. Wu, and Q. Zheng, Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures. J. Mater. Chem. B 4 7075-7079 (2016) DOI: 10.1039/C6TB02178F.
[66] X. Feng, Z. Ma, J. V. MacArthur, C. J. Giuffre, A. F. Bastawros, and W. Hong, Highly Stretchable Double-Network Composite. Soft Matter 12 8999-9006 (2016) DOI: 10.1039/C6SM01781A .
[65] W. Hong, Inverse lagrangian formulation for the deformation of hyperelastic solids. Extreme Mech. Lett. 9 (1), 30-39 (2016) DOI: 10.1016/j.eml.2016.04.009 .
[64] H. Guo, T. Kurokawa, M. Takahata, W. Hong, Y. Katsuyama, F. Luo, J. Ahmed, T. Nakajima, T. Nonoyama, and J.-P. Gong, Quantitative observation of electric potential distribution of polyelectrolyte hydrogels using microelectrode technique. Macromolecule 49(8) 3100-3108 (2016) DOI: 10.1021/acs.macromol.6b00037 .
[63] F. Gao and W. Hong, Phase-field model for two-phase lithiation of silicon. J. Mech. Phys. Solids 94, 18-23 (2016) DOI: 10.1016/j.jmps.2016.04.020 .
[62] Q. Wang, W. Hong, and L. Dong, Graphene "Microdrums" on Freestanding Perforated Thin Membrane for High Sensitivity MEMS Pressure Sensor. Nanoscale 8 7663-7671 (2016) DOI: 10.1039/C5NR09274D .
[61] T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai, T. Kurokawa, C. Ung-il, and J.-P. Gong, A Yielding Criterion of Double Network Hydrogels. Macromolecule 49 (5), 1865-1872 (2016) DOI: 10.1021/acs.macromol.5b02592 .
[60] X. Huang, B. Li, W. Hong, Y.P. Cao, and X.Q. Feng, Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J. Mech. Phys. Solids 94, 88-104 (2016) DOI: 10.1016/j.jmps.2016.04.014 .
[59] Z. Ma, X. Feng, and W. Hong, Fracture of Soft Elastic Foam. ASME. J. Appl. Mech. 83(3):031007 (2015) DOI: 10.1115/1.4032050.
[58] W. Hong and K. C. Pitike Modeling breakdown-resistant composite dielectrics. Proc. IUTAM 12, 73-82 (2015) DOI: 10.1016/j.piutam.2014.12.009.
[57] W. Hong A kinetic model for anisotropic reactions in amorphous solids. Extreme Mech. Lett. 2, 46-51 (2015) DOI: 10.1016/j.eml.2015.01.002.
[56] Y. Zhao, Y. Cao, W. Hong, M. K. Wadee, X.-Q. Feng Towards a quantitative understanding of the wrinkling pattern transition in hyperelastic bilayer systems from sinusoidal to period-doubling. Proc. R. Soc. A 471, 20140695 (2015) DOI: 10.1098/rspa.2014.0695.
[55] X. Huang, H.-P. Zhao, W.-H. Xie, W. Hong, X.-Q. Feng Radial wrinkles on film-substrate system induced by local prestretch: A theoretical analysis. Int. J. Solids. Struct. 58, 12-19 (2015); DOI: 10.1016/j.ijsolstr.2014.12.011.
[54] Y. Han, A. Mohla, X. Huang, W. Hong and L. E. Faidley Magnetostriction and field stiffening of magneto-active elastomers. Int. J. Appl. Mech. 7, 1550001 (2015); DOI: 10.1142/S1758825115400013.
[53] Y. Xu, W. Hong, Y. Feng, and X. Tan Antiferroelectricity induced by electric field in NaNbO3-based lead-free ceramics. Appl. Phys. Lett. 104, 052903 (2014); DOI: 10.1063/1.4863850.
[52] K. C. Pitike and W. Hong Phase-field model for dielectric breakdown in solids. J. Appl. Phys. 115, 044101 (2014); DOI: 10.1063/1.4862929.
[51] X. Huang, A. Mohla, W. Hong, A. F. Bastawros, and X.-Q. Feng Magnetorheological brush - a soft structure with highly tuneable stiffness. Soft Matter 10, 1537 (2014); DOI: 10.1039/C3SM52159A.
[50] X. Tan, S. E. Young, Y. H. Seo, J. Y. Zhang, W. Hong, K. G. Webber Transformation toughening in an antiferroelectric ceramic. Acta Materialia 62, 114-121 (2014); DOI: 10.1016/j.actamat.2013.09.038.
[49] W. Toh, Z. Liu, T. Y. Ng, and W. Hong (2013). Inhomogeneous large deformation kinetics of polymeric gels. Int. J. Appl. Mech. 5, 1350001 (2013); DOI: 10.1142/S1758825113500014.
[48] W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transport. J. Mech. Phys. Solids 61, 1281-1294 (2013); DOI: 10.1016/j.jmps.2013.03.001.
[47] S. E. Young, J. Y. Zhang, W. Hong, and X. Tan, Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. J. Appl. Phys. 113, 054101 (2013); DOI: 10.1063/1.4790135.
[46] Z. Liu, S. Swaddiwudhipong, and W. Hong, Pattern formation in plants via instability theory of hydrogels. Soft Matter 9, 577-587 (2013); DOI: 10.1039/C2SM26642C.
[45] W. Lai, A. F. Bastawros, W. Hong, and S.-J. Chung, Fabrication and Analysis of Planar Dielectric Elastomer Actuators Capable of Complex 3-D Deformation. Proc. IEEE International Conference on Robotics and Automation (ICRA), 4968-4973 (2012).
[44] W. Lai, A. F. Bastawros, and W. Hong, Out-of-Plane Motion of a Planar Dielectric Elastomer Actuator with Distributed Stiffeners. Proc. SPIE 8340, 834011 (2012); DOI: 10.1117/12.917494.
[43] Y. Han, Z. Zhang, L. E. Faidley, and W. Hong, Microstructure-based modeling of magneto-rheological elastomers. Proc. SPIE 8342, 83421B (2012); DOI: 10.1117/12.925492.
[42] H. Yang, X. Qiao, W. Hong, and L. Dong, Core-shell microcapsules With embedded microactuators for regulated release. J. Microelectromech. Sys. 22, 509-518 (2013). DOI:10.1109/JMEMS.2012.2227950.
[41] X. Wang and W. Hong, A visco-poroelastic theory for polymeric gels. Proc. R. Soc. A 468, 3824 (2012); DOI:10.1098/rspa.2012.0385.
[40] J. P. Gong and W. Hong, Mechanics and physics of hydrogels (Editorial). Soft Matter 8, 8006 (2012); DOI: 10.1039/c2sm90083a.
[39] X. Wang and W. Hong, Delayed fracture in gels. Soft Matter 8, 8171 (2012); DOI: 10.1039/C2SM25553G.
[38] H. Yang, W. Hong, and L. Dong, A controlled biochemical release device with embedded nanofluidic channels. Appl. Phys. Lett. 100, 153510 (2012); DOI: 10.1063/1.4704143.
[37] W. Hong, and X. Wang, Modeling mechano-chromatic lamellar gels. Phys. Rev. E 85, 031801 (2012).
[36] Y. Han, W. Hong, and L. Faidley, Field-stiffening effect of magneto-rheological elastomers. I. J. Solids. Struct. 50, 2281-2288 (2013). DOI: 10.1016/j.ijsolstr.2013.03.030
[35] X. Wang and W. Hong, Pseudo-elasticity of double network gels. Soft Matter, 7, 8576-8581 (2011) DOI: 10.1039/C1SM05787A.
[34] Z. S. Liu, S. Swaddiwudhipong, F. S. Cui, W. Hong, Z. Suo and Y. W. Zhang, Analytical solutions of polymeric gel structures under buckling and wrinkle. Int. J. Appl. Mech. 3, 235-257 (2011).
[33] Y. Han, W. Hong, and L. Faidley, Rate dependent finite deformation of magneto-active polymers. Proc. SPIE 7978, 797819 (2011).
[32] W. Hong, Mechanics of polymeric gels, in Advances in Soft Matter Mechanics. S. Li and B. Sun Eds., 1st Ed., Springer (2011).
[31] S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo. Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Phys. B, 49 (7), 504-515 (2011)
[30] Y. Han, W. Hong, and L. Faidley, Coupled magnetic field and viscoelasticity of ferrogel. Int. J. Appl. Mech., 3, 259-278 (2011).
[29] X. Wang and W. Hong, Theory of Ionic Polymer Conductor Network Composite. Appl. Phys. Lett, 98, 081910 (2011). doi:10.1063/1.3555437
[28] W. Hong, Modeling viscoelastic dielectrics. J. Mech. Phys. Solids, 59, 637-650 (2011).
[27] Z. Liu, W. Hong, Z. Suo, S. Swaddiwudhipong, Y. Zhang, Modeling and simulation of buckling of polymeric membrane thin film gel. Comp. Mater. Sci. 49, S60-S64 (2010).
[26] W. Hong and X. Wang, Actuation and ion transportation of polyelectrolyte gels. Proc. SPIE 7644, 764417 (2010).
[25] L. E. Faidley, Y. Han, K. Tucker, S. Timmons and W. Hong, Axial strain of ferrogels under cyclic magnetic fields. Smart Mater. Struct. 19, 075001 (2010).
[24] X. Wang and W. Hong, Surface interactions between two like-charged polyelectrolyte gels. Phys. Rev. E 81, 041803 (2010).
[23] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6, 784-793 (2010).
[22] X. Tan, J. Frederick, C. Ma, E. Aulbach, M. Marsilius, W. Hong, T. Granzow, W. Jo, and J. Rödel, Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3. Phys. Rev. B 31, 014103 (2010)
[21] W. Hong, X. Zhao, and Z. Suo, Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95, 111901 (2009); doi:10.1063/1.3211917
[20] W. Hong, X. Zhao, and Z. Suo, Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58, 558-577 (2010).
[19] W. Hong, Z. Liu, and Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46, 3282-3289 (2009).
[18] W. Hong, X. Zhao, Z. Suo, Drying-induced bifurcation in a hydrogel-actuated nanostructure, J. Appl. Phys.. 104, 084905 (2008).
[17] J. Zhou, W. Hong, X. Zhao, and Z. Suo, Instantaneous surface stresses of swelling and drying of polymeric gels. Advances in Heterogeneous Material Mechanics 2008, 602-604 (2008).
[16] X. Zhao, W. Hong, Z. Suo, Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. App. Phys. Lett., 92, 051904 (2008).
[15] W. Hong, X. Zhao, J. Zhou, and Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56, 1779-1793 (2008).
[14] X. Zhao, W. Hong and Z. Suo, Stretching and polarizing a dielectric gel immersed in a solvent, Int. J. Solids Struct. 45, 4021-4031 (2008).
[13] J. Zhou, W. Hong, X. Zhao, Z. Zhang, and Z. Suo, Propagation of instability in dielectric elastomers, Int. J. Solids Struct, 45, 3739-3750 (2008).
[12] X. Zhao, W. Hong and Z. Suo, Electromechanical coexistent states and hysteresis in dielectric elastomers, Phys. Rev. B, 76,134113 (2007).
[11] W. Hong, Z. Suo and Z.-Y. Zhang, Dynamics of terraces on a silicon surface due to combined action of strain and electric current. J. Mech. Phys. Solids, 56, 267-278 (2008).
[10] M. Yoon, H. N. Lee, W. Hong, H. M. Christen, Z.-Y. Zhang, Z. Suo, Dynamics of step bunching in heteroepitaxial growth on vicinal substrates, Phys. Rev. Lett. 99, 055503 (2007).
[9] W. Hong, Z.-Y. Zhang, and Z. Suo, Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxy. Phys. Rev. B, 74, 235318 (2006).
[8] W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z. Suo, and Z.-Y. Zhang, Persistent step-flow growth of strained films on vicinal substrates. Phys. Rev. Lett. 95, 095501 (2005).
[7] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in films on soft elastic substrates. J. Mech. Phys. Solids 53, 2101-2118 (2005).
[6] W. Hong and Z. Suo, Electric field-directed patterning of molecules on a solid surface. Proceedings of Workshop on Nanomechanics, Pacific Groves, California, 14-17 July 2004.
[5] Z.Y. Huang, W. Hong, Z. Suo, Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601(R), (2004).
[4] W. Hong and Z. Suo, Molecular assembly on cylindrical surfaces. Int. J. Solids Struct. 41, 6895-6903 (2004).
[3] Z. Suo, W. Hong. Programmable motion and assembly of molecules on solid surfaces. Proc. Natl. Acad. Sci. USA 101, 7874-7879 (2004).
[2] W. Yang, W. Hong, Numerical simulation for deformation of nano-grained metals, Acta Mechanica Sinica, 18 (5): 506-515 (2002).
[1] W. Yang, H. Wang, W. Hong, Proc. Int. Symp. Yg. Sch. Mech. Mater. Eng. Sci. Exper., Science Press New York Ltd, 1-12 (2001).