Modeling viscoelastic dielectrics

Wei Hong

Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA

ARTICLE INFO

Article history:
Received 13 July 2010
Received in revised form 13 September 2010
Accepted 2 December 2010
Available online 9 December 2010

Keywords:
Dielectric elastomer
Viscoelasticity
Large deformation
Piezoelectricity

ABSTRACT

Dielectric elastomers, as an important category of electroactive polymers, are known to have viscoelastic properties that strongly affect their dynamic performance and limit their applications. Very few models accounting for the effects of both electrostatics and viscoelasticity exist in the literature, and even fewer are capable of making reliable predictions under general loads and constraints. Based on the principles of non-equilibrium thermodynamics, this paper develops a field theory that fully couples the large inelastic deformations and electric fields in deformable dielectrics. Our theory recovers existing models of elastic dielectrics in the equilibrium limit. The mechanism of instantaneous instability, which corresponds to the pull-in instability often observed on dielectric elastomers, is studied in a general non-equilibrium state. The current theoretical framework is able to adopt most finite-deformation constitutive relations and evolution laws of viscoelastic solids. As an example, a specific material model is selected and applied to the uniform deformation of a dielectric elastomer. This model predicts the stability criteria of viscoelastic dielectrics and its dependence on loading rate, pre-stress, and relaxation. The dynamic response, as well as the hysteresis behavior of a viscoelastic dielectric elastomer under cyclic electric fields, is also studied.

1. Introduction

Electroactive polymers, as a category of polymeric materials that deform under electrical stimuli, are emerging as promising alternatives to existing materials for actuation and sensing applications. In contrast to traditional actuator materials (e.g. piezoelectric ceramics) which are known for their high load capacity but small deformation, electroactive polymers are characterized by their softness, flexibility, and the consequent large-deformation capability, as reviewed by Bar-Cohen and Zhang (2008). The properties of electroactive polymers resemble those of natural biological muscles, and are expected to provide biomimetic opportunities for industry and bring impact to various areas that include robotics, biomedical devices, and energy harvesting (Bar-Cohen, 2002, 2004; Zhang et al., 2005; Wingert et al., 2006; Sugiyama and Hirai, 2006). Among various types of electroactive polymers, dielectric elastomers are known for their ease-of-use, high coupling efficiency, lightweight, cost effectiveness, and large scope of applications (Kornbluh et al., 1995; Pelrine et al., 1998; Carpi et al., 2008).

A common design of dielectric elastomer film is sketched in Fig. 1. An electric field is applied through the thickness by a pair of electrodes attached to both surfaces of the film. Although rigid plates are used as electrodes in some designs (Lau et al., 2006), stretchable electrodes are commonly used to accommodate the large in-plane deformation of the elastomer. Just as in a parallel capacitor, charge accumulates on both electrodes upon application of the voltage. The electrostatic attraction between the two oppositely charged electrodes, together with the polarization-induced intrinsic deformation of the material
et al., 2000c; Goulbourne et al., 2005; Wissler and Mazza, 2005a). With the more recent development of fully coupled uniformly deformed elastomer, later models have achieved a better agreement with experiment in some cases (e.g. Pelrine et al., 1998). While these approaches may explain some experimental phenomena, their physical origin remains behaviors of dielectric elastomers. Early analyses tend to regard the material as linear elastic by neglecting the effect of finite nonlinear field theories (e.g. Voltairas et al., 2003; Dorfmann and Ogden, 2005; McMeeking and Landis, 2005; Suo et al., 2008). To prevent buckling or wrinkles, it is preferred that a free-standing dielectric-elastomer film is under tension throughout the entire actuation process, and thus a lateral pre-stretch is usually applied in actuator designs. In addition to the tension needed for free-standing films, pre-stretch is also believed to have a tremendous enhancement to the actuation performance of a dielectric elastomer (Pelrine et al., 2000a, 2000b; Kofod et al., 2003; Zhao et al., 2007; Kofod, 2008).

The demand for a theoretical guidance for reliable designs has drawn continuous efforts on modeling the coupled behaviors of dielectric elastomers. Early analyses tend to regard the material as linear elastic by neglecting the effect of finite deformation, and account for the electromechanical coupling by adding an empirical Maxwell stress (Kornbluh et al., 1995; Pelrine et al., 1998). While these approaches may explain some experimental phenomena, their physical origin remains unclear and the predictions are far from accurate. Using a similar approach by employing hyperelastic constitutive laws to a uniformly deformed elastomer, later models have achieved a better agreement with experiment in some cases (e.g. Pelrine et al., 2000c; Goulbourne et al., 2005; Wissler and Mazza, 2005a). With the more recent development of fully coupled nonlinear field theories (e.g. Voltairas et al., 2003; Dorfmann and Ogden, 2005; McMeeking and Landis, 2005; Suo et al., 2008), the mechanism of phenomena such as the pull-in instability are rigorously modeled and predicted (Zhao et al., 2007; Zhao and Suo, 2007). It has also been shown that the empirical Maxwell stress only represents the behavior of a special class of materials that possess no physical electromechanical coupling (Zhao et al., 2007), and therefore such an approach may not be applicable to some other dielectric elastomers (Zhao and Suo, 2008a, 2009). The framework of the nonlinear field theory has yielded various finite-element implementations that enable further numerical simulations of dielectric elastomers under complex working conditions (e.g. Vu et al., 2007; Zhou et al., 2008; Zhao and Suo, 2008b).

It has long been realized through experiments that the electromechanical responses of dielectric elastomers are highly rate-dependent (Pelrine et al., 2000a; Zhang et al., 2005; Plante and Dubowsky, 2006), which implies that the mechanical property of dielectric elastomers may be viscoelastic. The rate-dependency of a dielectric elastomer can influence its dynamic performance and coupling efficiency (Kornbluh et al., 2000), and thus limit its application. However, very few researches have been carried out on modeling the electro-viscoelastic properties of dielectric elastomers. Some early approaches use linear viscoelasticity to model relatively small deformations (e.g. Yang et al., 2005; Wissler and Mazza, 2005b). Plante and Dubowsky (2007) studied the dynamic performance of dielectric elastomers and achieved a better agreement by using a modified Bergström–Boyce model (1998) for the finite-deformation viscoelasticity. These models either consider solely the mechanical behavior of dielectric elastomer, or treat the electromechanical coupling by adding the Maxwell stress. Many questions remain unclear even with all these models developed. For example, how accurate would the Maxwell-stress approach be for real materials, especially those with significant electrostriction effects? Should the added Maxwell stress only appear in the elastic response of the material, or should it affect the inelastic deformation as well? How would a material model be verified by experiments and how can one calibrate it for a specific material?

To answer at least some of these questions, we aim at developing a continuum field theory for the behavior of a viscoelastic dielectric under combined electric and mechanical loads. Following the approach previously taken by Suo et al. (2008) in developing the field theory for elastic dielectrics, we only use measurable quantities such as mechanical forces and electric potential to define field variables. In Section 2, we define the fields of stress and electric displacement by using virtual work, or equivalently, the momentum balance and Gauss’s law of electrostatics. Such definitions avoid the ambiguity introduced by material-specific definitions of physical quantities, especially in non-equilibrium cases. The virtual-work-based definitions further ease the introduction of the thermodynamic principles in Section 3, where general guidelines for the material laws of viscoelastic dielectrics are derived for the first time. As another emphasis of the paper, Section 4 discusses the stability of a viscoelastic dielectric in a non-equilibrium state, and introduces the idea of instantaneous instability which corresponds to an

![Sketch of a dielectric-elastomer film deforming uniformly under lateral biaxial stress and a voltage applied via stretchable electrodes.](image)
important failure mode of dielectric elastomers. Under some physical assumptions, Section 5 proposes a simple material law for viscoelastic dielectrics, and Section 6 uses it to analyze the homogeneous deformation and stability of a dielectric-elastomer film as an illustrative example for application.

2. Definition of the fields

Although any state of a material may serve as the reference state, here for simplicity, we take a fully relaxed state under no external electrical or mechanical load to be the reference. Following the usual practice in finite-deformation solid mechanics, we identify a material particle by its position vector in the reference state, X, and trace its motion by its current position at time t, $x(X,t)$, as illustrated in Fig. 2. At least in a state of thermodynamic equilibrium, the local information on the deformation and rotation of a material particle is characterized by the deformation gradient tensor

$$F_{iK} = \frac{\partial x_i(X,t)}{\partial X_K}.$$

The definitions of internal fields such as stress can be ambiguous especially when the system is not in equilibrium. Therefore, we define them as the internal representatives of externally applied loads, which are independent of the material properties and the thermodynamic state. The definitions of stress and electric displacement given below closely follow those in an equilibrium state by Suo et al. (2008). In the reference state, let $dV(X)$ be the volume of a material particle, and $dA(X)$ be the area of a material element on a surface. Correspondingly, we denote the mechanical force in the volume as $b_i(X,t)dV$ and that on the surface as $t_i(X,t)dA$. We define the first Piola–Kirchhoff stress tensor (i.e. the transpose of nominal stress), $P_i(X,t)$, such that the equation

$$\int_\Omega P_{iK} \frac{\partial x_i}{\partial X_K} dV = \int_\Omega b_i dV + \int_{\partial\Omega} t_i dA$$

holds true for arbitrary field $\xi_i(X)$ in any domain Ω and on its surface $\partial\Omega$. Inertial forces are neglected in the current paper. Here, Eq. (2) is only a definition of the stress field and the vectorial test function $\xi_i(X)$ needs no physical interpretation. When ξ_i is taken to be a virtual displacement field, Eq. (2) becomes the principle of virtual work, and the stress thus defined recovers the common definition in a state of thermodynamic equilibrium. Physically, the stress defined by Eq. (2) is work conjugate to the deformation gradient: the mechanical work done by external forces over any admissible displacement field

Fig. 2. An arbitrary physical deformation is decomposed into two parts through imagining an intermediate state of deformation. The intermediate state is achieved by elastically relaxing the current state. The deformation gradient between the intermediate state and the current state is signified by the elastic deformation gradient P, and that between the reference and intermediate states is signified by the inelastic deformation gradient F. The actual deformation gradient is related to the two through the chain rule, $F_{iK} = F_{i}^e F_{iK}$. The intermediate state contains only irreversible deformation, and it is free of inelastic stress. The fully relaxed material particles in the intermediate state may not constitute a continuum body. The inelastic stress in the current state is assumed to be only a function of F^e.

always equals the work done by stress over the corresponding field of deformation gradient, despite of the material's thermodynamic state.

Applying the divergence theorem to the left-hand side of Eq. (2), through integration by parts, one would easily obtain a mathematically equivalent definition of the first Piola–Kirchhoff stress

$$\frac{\partial P_{JK}}{\partial X_K} + b_j = 0$$ \hspace{1cm} (3)

in the volume of the body and

$$(P_{JK} - P_{JK}^0) N_K = t_i$$ \hspace{1cm} (4)

on an interface where the mechanical traction t is applied. The labels “+” and “−” differentiate the media on the two sides of the interface. The unit vector N is normal to the interface in the reference state, pointing towards the medium “+”. Eqs. (3) and (4) are the definition of stress equivalent to Eq. (2). They assume partial mechanical equilibrium, namely the force balance on each material particle, but do not imply the thermodynamic equilibrium of the material.

At time t, the material particle X has electric potential $\Phi(X,t)$. The nominal electric field is defined as the negative gradient of the electric potential with respect to the reference state

$$\hat{E}_K = -\frac{\partial \Phi(X,t)}{\partial X_K}$$ \hspace{1cm} (5)

In the current state, let the charge in a volume element of material be $\hat{q}(X,t)dV$ and that on a surface element be $\hat{\omega}(X,t)dA$. Similar as the nominal electric field and the mechanical body and surface loads, the charge densities \hat{q} and $\hat{\omega}$ are both measured with respect to the reference geometry. We define the vector field of nominal electric displacement, $\hat{D}(X,t)$, such that

$$\int_{V} \left(-\frac{\partial \hat{q}}{\partial X_K} \right) \hat{D}_K dV = \int_{V} \hat{\omega} dV + \int_{A} \hat{\omega} dA$$ \hspace{1cm} (6)

holds true for arbitrary test function $\hat{\omega}(X)$. Upon application of the divergence theorem, Eq. (6) yields an equivalent definition of the nominal electric displacement in a differential form

$$\frac{\partial \hat{D}_K}{\partial X_K} = \hat{q}$$ \hspace{1cm} (7)

in the volume and

$$(\hat{D}_K^+ - \hat{D}_K^-) N_K = \hat{\omega}$$ \hspace{1cm} (8)

on the surface. In an equilibrium state, Eqs. (7) and (8) are known as Gauss’s law of electrostatics.

Large deformation is usually expected due to the soft nature of the material. Therefore, the geometries in the current and reference states differ significantly. The quantities defined here are nominal fields in a Lagrange description (Dorfmann and Ogden, 2005; Suo et al., 2008). When needed, equations in terms of the nominal quantities can be easily rewritten in the current state using the geometric relations between the nominal and true fields, such as

$$\sigma_{ij} = P_{IK} F_{JK} \frac{\text{det} F}{\text{det} F_0}, \quad D_i = \hat{D}_K F_{JK} \frac{\text{det} F}{\text{det} F_0}, \quad \text{and} \quad E_i F_{JK} = \hat{E}_K,$$ \hspace{1cm} (9)

where σ, D, and E are the true stress, true electric displacement, and the true electric field respectively.

3. Non-equilibrium thermodynamics

Consider a body of deformable dielectric, loaded mechanically by a field of body force b and surface traction t, and electrically by a field of batteries with electric potential Φ. Associated with a displacement field $\delta \mathbf{x}$ and change in the nominal charge densities $\delta \hat{q}$ and $\delta \hat{\omega}$, the external electrical and mechanical loads do work

$$\int b_i \delta \mathbf{x}_i dV + \int t_j \delta \mathbf{x}_j dA + \int \Phi \delta \hat{q} dV + \int \hat{\omega} dA.$$ \hspace{1cm} (10)

Let W be the Helmholtz free energy of the material per unit reference volume and δW be its change associated with the displacement and charge redistribution. Utilizing the definition of stress and electric displacement, one has the corresponding change in the total free energy of the system, G, including the potential of the external loads

$$\delta G = \int (\delta W - P_{IK} \delta F_{JK} - \hat{E}_K \delta \hat{D}_K) dV.$$ \hspace{1cm} (11)

The laws of thermodynamics dictate that the free energy of the system never increases, $\delta G \leq 0$. For a physically possible change in displacement and charge distribution, the inequality must hold true in any volume. Therefore, we have

$$\delta W - P_{IK} \delta F_{JK} - \hat{E}_K \delta \hat{D}_K \leq 0.$$ \hspace{1cm} (12)
Inequality (12) holds true on any material particle for any process, and the equal sign takes place only when the process is reversible, i.e. the system is locally in equilibrium. The thermodynamic equilibrium state of a material particle is fully determined by the deformation gradient and the electric displacement. For a general inelastic material, the free energy in a non-equilibrium state differs from the equilibrium free energy. To distinguish between them, we introduce the equilibrium Helmholtz free-energy density, and write it as \(W_{\text{EQ}}(\dot{\mathbf{F}}, \mathbf{D}) \). From Eq. (12) in the case of an equal sign, we obtain the following constitutive relations in an equilibrium state:

\[
\begin{align*}
\frac{\partial W_{\text{EQ}}(\dot{\mathbf{F}}, \mathbf{D})}{\partial F_{ij}} &= \frac{\partial W_{\text{EQ}}(\dot{\mathbf{F}}, \mathbf{D})}{\partial F_{ij}}, \\
\frac{\partial W_{\text{EQ}}(\dot{\mathbf{F}}, \mathbf{D})}{\partial D_{ij}} &= \frac{\partial W_{\text{EQ}}(\dot{\mathbf{F}}, \mathbf{D})}{\partial D_{ij}}.
\end{align*}
\]

(13)

in which \(F_{ij} \) and \(D_{ij} \) are, respectively, the first Piola-Kirchhoff stress and the nominal electric field in an equilibrium state.

To describe a non-equilibrium state, we follow the usual approach in finite-deformation viscoelasticity and plasticity (Lee, 1969), and imagine an intermediate state between the reference state and the current state, which may be achieved physically by isolating and elastically relaxing the material particle. The three states are illustrated in Fig. 2. Denoting the deformation gradient of the intermediate state as \(\dot{\mathbf{F}}(\mathbf{X}, t) \), and that of the current state with respect to the intermediate state as \(\dot{\mathbf{F}}(\mathbf{X}, t) \), we have the multiplicative decomposition of the deformation gradient

\[
F_{ij} = F_{ij}^e F_{ij}^p.
\]

(14)

where \(\dot{\mathbf{F}}^e \) and \(\dot{\mathbf{F}}^p \) are, respectively, the electric fields and the nominal electric field in an equilibrium state.

Following Reese and Govindjee (1998), we assume that the non-equilibrium Helmholtz energy, namely the difference between the Helmholtz free energy in a non-relaxed state and that in equilibrium, depends solely on the elastic deformation between the relaxed intermediate state and the current state

\[
W - W_{\text{EQ}} \equiv W_{\text{NEQ}}(\dot{\mathbf{F}}^e).
\]

(15)

Since the irreversible deformation in the intermediate state is more suitable in characterizing the non-equilibrium state of the material, here we take the corresponding deformation gradient \(\dot{\mathbf{F}}^e \) as an internal state variable, and write the total Helmholtz free energy density as

\[
W(\dot{\mathbf{F}}, \dot{\mathbf{F}}^e, \dot{\mathbf{D}}) = W_{\text{EQ}}(\dot{\mathbf{F}}, \dot{\mathbf{D}}) + W_{\text{NEQ}}(\dot{\mathbf{F}}^e),
\]

(16)

where \(\dot{\mathbf{H}} \) is the inverse tensor of the deformation gradient of the intermediate state, \(\dot{\mathbf{H}} = (\dot{\mathbf{F}}^e)^{-1} \). Due to the electrostatic equilibrium assumption, the nominal electric displacement does not appear in the non-equilibrium free-energy function \(W_{\text{NEQ}} \).

Substituting Eqs. (13) and (16) into the thermodynamic inequality (12), one arrives at

\[
\left(p_{ik} - \frac{\partial W}{\partial F_{ik}} \right) \delta F_{ik} - \frac{\partial W}{\partial F_{ik}} \delta F_{ik} \geq 0.
\]

(17)

Inequality (17) holds true for all physically possible processes away from the current state, described by \(\delta \mathbf{F} \) and \(\delta \mathbf{F}^e \), including reversible processes in which an equal sign should be taken. Therefore, the first Piola-Kirchhoff stress is the derivative of the Helmholtz free-energy density with respect to the deformation gradient even in a non-equilibrium state (Coleman and Gurtin, 1967)

\[
p_{ik} = \frac{\partial W}{\partial F_{ik}} = p_{ik}^e + p_{ik}^\text{NEQ} \dot{\mathbf{H}}_{ik}^e,
\]

(18)

where the inelastic stress tensor \(p_{ik}^\text{NEQ} \) is given by

\[
p_{ik}^\text{NEQ} = \frac{\partial W_{\text{NEQ}}}{\partial F_{ik}}.
\]

(19)

The remainder of the inequality that governs the evolution of the inelastic internal variables becomes

\[
p_{ik}^\text{NEQ} F_{jk}^e \dot{H}_{km} \delta F_{ik} \geq 0,
\]

(20)

which physically indicates that the energy of the system only dissipates in inelastic deformation.

Since the behaviors of viscoelastic materials are usually rate-dependent, the variation expressions are often replaced by the corresponding rates of change, e.g. \(\dot{\mathbf{F}}^e = \delta \mathbf{F}^e / \delta t \). Introducing the inelastic true stress

\[
\sigma_{ij}^\text{NEQ} = \frac{p_{im}^\text{NEQ} F_{jm}^e}{\det \mathbf{F}^e},
\]

(21)

we can rewrite inequality (20) in the current configuration as

\[
\sigma_{ij}^\text{NEQ} L_{mn}^i \geq 0,
\]

(22)

where \(L_{mn}^i \) is the inelastic part of the covariant velocity gradient

\[
L_{mn}^i = \dot{F}_{mk} H_{kn}^e + L_{mn}^e + L_{mn}^i = \dot{F}_{mj} H_{jn}^e + F_{mj} \dot{F}_{jk} H_{kp}^e H_{pn}^e.
\]

(23)
Here H and H^e are the inverses of the corresponding deformation gradient tensors. L^i physically represents the gradient of the inelastic velocity field with respect to the current configuration. Due to the symmetry of the true stress tensor, inequality (22) is sometimes written in terms of the symmetric part of the inelastic velocity gradient, i.e. the inelastic stretch rate $Q_{ij} = \left(L^i + L^j\right)/2$

$$\sigma_{mn}^{\text{NEQ}} Q_{ij}^{\text{NEQ}} \geq 0.$$

(24)

While inequality (24) as a consequence of the second law of thermodynamics must be satisfied by all processes for any material, a kinetic evolution equation in the form

$$Q_{ik} = M_{jkmn}^s \sigma_{mn}^{\text{NEQ}}$$

(25)

is often used in practice (e.g. Boyce et al., 1989; Reese and Govindjee, 1998). The material-dependent fourth-rank mobility tensor M is positive-definite so that inequality (24) is satisfied automatically. In general models for the evolution of internal parameters, the mobility tensor may depend on various state variables. Eqs. (13), (18) and (25), together with the definition of state variables in Section 2, form a closed system for the analysis of the coupled electromechanical response of viscoelastic dielectrics. It is noteworthy that the evolution of the inelastic deformation is not fully determined, since Eq. (25) contains no information on rotation. The inelastic deformation can be identified uniquely through various ways, and the choice of approach is not essential as demonstrated by Boyce et al. (1989). One convenient way is to simply discard rotation in the intermediate state.

The rheological model depicted in Fig. 3 further illustrates the essence of the theoretical approach introduced in this section. The two springs in the model represent the elasticity in two types of polymer chains in the dielectric elastomer—one being elastic and deforms reversibly, and the other relaxes in time and dissipates energy. The viscous deformation is represented by a dashpot in Fig. 3. In the current state, both springs are stretched and contribute to the load-carrying capacity. The overall strain is the sum of the elastic strain in spring 2 and the inelastic strain in the dashpot, in accordance with the small-strain limit of the multiplicative decomposition in Eq. (14). The imaginary intermediate state can be achieved by relaxing spring 2 while maintaining the state of the dashpot. In the intermediate state, the load is only carried by spring 1. The difference between the intermediate and current states is the elastic strain in spring 2. In the current state, the stress that corresponds to this elastic strain becomes the driving force of the viscous deformation in the dashpot.

4. Instabilities in viscoelastic dielectric elastomers

Among various applications of dielectric elastomers, one major mode of failure is induced by electromechanical instability (e.g. Stark and Garton, 1955; Blok and LeGrand, 1969; Zeller and Schneider, 1984; Plante and Dubowsky, 2006). Let us first look at the stability of a thermodynamic equilibrium state. Under the currently developed framework, to reach a true thermodynamic equilibrium state, the material must be fully relaxed, and no inelastic deformation is underway, $L^i = 0$. Therefore, in a state of equilibrium, the inelastic stress vanishes, $\sigma^{\text{NEQ}} = 0$, and the system is identical to that of an elastic dielectrics (Suo et al., 2008). An equilibrium state is stable when the total free energy of the system reaches a local minimum. In a system where constant loads and voltages are applied, an equilibrium state is stable when the total free energy of the
system is convex, or, equivalently, when the Hessian

$$\mathbf{\mathbf{\mathbb{N}}}_{\mathbf{EQ}} = \begin{bmatrix}
\frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{F}^i} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{D}^i} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{Q}^i} \\
\frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{F}^j} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{D}^j} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{Q}^j} \\
\frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{F}^k} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{D}^k} & \frac{\partial W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D})}{\partial \mathbf{Q}^k}
\end{bmatrix}
$$

is positive-definite. All indices in Eq. (26) are back to the reference state to exhibit the implied symmetry, and each of the four entries in the matrix represents a sub matrix. The stability of an elastic dielectric has been studied extensively (e.g. Zhao et al., 2007; Zhao and Suo, 2007, 2009), and here we will look at another type of instabilities specifically for viscoelastic materials.

It may seem unusual to talk about the stability of a non-equilibrium state. But phenomena similar to the instability of an equilibrium state have been observed experimentally in viscoelastic materials (Plante and Dubowsky, 2006). The failure induced by these phenomena is often catastrophic, and takes place at a state far from the fully relaxed equilibrium state. Moreover, the occurrence of these phenomena is dependent on the loading rate. Inspired from the fact that these phenomena complete much faster than the relaxation processes, we propose the following mechanism. At a time scale much shorter than the characteristic time of the evolution of inelastic deformation, the system may be regarded as in a state of equilibrium. If a perturbation on the current state (over any state variables except the viscoelastic internal variable) lowers the total free energy, the state is likely to be driven away dynamically, since the rate-dependent dissipative process is assumed to be inactive. To distinguish from the common idea of stability, we will refer to such phenomena as instantaneous instabilities.

Similar to equilibrium states, a non-equilibrium state is instantaneously stable when the total free energy of the system increases upon any instantaneous change in the deformation and charge density. In other words, the free energy of the system is minimized on the hypersurface spanned by \(\mathbf{F}, \mathbf{D}, \mathbf{Q} \). Similar to the criterion of localization during plastic deformation (Rice, 1976), the critical condition for unstable evolution is the singularity of the Hessian, \(\det \mathbb{N} = 0 \).

The physical significance of the instantaneous stability of a non-equilibrium state would be clearer if we refer to the rate form of governing equations. Taking material derivatives on both sides of Eqs. (13) and (18) and utilizing the symmetry, we have

$$
\dot{\mathbf{F}}_K = \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{F}^i} \dot{\mathbf{F}}_m N + \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{D}^i} \dot{\mathbf{D}}_N N + \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{Q}^i} \dot{\mathbf{Q}}_m N
$$

$$
\dot{\mathbf{D}}_K = \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{F}^i} \dot{\mathbf{F}}_m N + \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{D}^i} \dot{\mathbf{D}}_N N + \frac{\partial W_{\mathbf{EQ}}}{\partial \mathbf{D}^i} \dot{\mathbf{Q}}_m N
$$

$$
\sigma_{\mathbb{N}m} = M_m^{-1} \mathbf{Q}_K
$$

The rates of evolution \(\dot{\mathbf{F}}, \dot{\mathbf{D}}, \dot{\mathbf{Q}} \) can be determined when the coefficient matrix of the right-hand side of system (28) is nonsingular. Similar to the criterion of localization during plastic deformation (Rice, 1976), the critical condition for unstable evolution is the singularity of the coefficient matrix. Since the mobility tensor \(\mathbf{M} \) is positive-definite, the critical condition for instability is reduced to the singularity of the Hessian, \(\det \mathbb{N} = 0 \), which is identical to the condition of instantaneous instability described above.

5. A specific material model

To apply the nonlinear field theory developed in preceding sections to the analysis of dielectric elastomers, one needs to specify the Helmholtz free-energy functions \(W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D}) \) and \(W_{\mathbf{EQ}}(\mathbf{F}) \), as well as the mobility tensor \(\mathbf{M} \). In order to characterize the material behavior under various loading conditions, during the past decades, there have been continuous efforts for developing equilibrium models (e.g. James and Guth, 1943; Treloar, 1975; Flory, 1977; Arruda and Boyce, 1993) and kinetic evolution models (e.g. Lubliner, 1985; Haupt, 1993; Reese and Govindjee, 1998; Bergström and Boyce, 1998) for polymeric materials in absence of external electric field. Possible forms of the equilibrium free-energy function \(W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D}) \) that couples electric field and deformation have been studied recently as well (e.g. Dorfmann and Ogden, 2006; Zhao et al., 2007; Zhao and Suo, 2008a; Richards and Odegard, 2010). When a combination of specific material laws are selected, the field theory presented here recovers the model developed by Plante and Dubowsky (2007). For quantitative prediction of a specific type of dielectric elastomers, the readers are suggested to select suitable free-energy functions and mobility in the literature, and calibrate the models using experimental data. Here for the purpose of demonstration, we will construct a simple model to study some phenomena qualitatively.

Following Zhao et al. (2007), we assume the material behaves in equilibrium as an ideal dielectric elastomer, of which the free-energy density only consists of the contributions from stretching and polarization \(W_{\mathbf{EQ}}(\mathbf{F}, \mathbf{D}) = W_{\mathbf{EQ}}(\mathbf{F}) + W_{\mathbf{EQ}}(\mathbf{D}) \). The physical decoupling between the deformation and the true electric displacement represents a category of materials that have liquid-like polarization behavior independent of the deformation state. For simplicity, we further assume the dielectric
property to be linear and the free energy of stretching to be entropic with Gaussian statistics (Treloar, 1975), so that the equilibrium free-energy function reads

\[W^{EQ}(\mathbf{F}, \mathbf{D}) = \frac{\mu^{EQ}}{2} F_{ik} F_{ik} + \frac{D_l D_l}{2\epsilon} = \frac{\mu^{EQ}}{2} F_{ik} F_{ik} + \frac{1}{2\epsilon} F_{ik} \dot{D}_k \dot{D}_k N F_{ik}, \tag{29} \]

where \(\mu^{EQ} \) is the equilibrium or long-term modulus, and \(\epsilon \) is the dielectric permittivity. Similarly, we assume the non-equilibrium free-energy function in the form

\[W^{NEQ}(F) = \frac{\mu^{NEQ}}{2} F_{im} F_{im} = \frac{\mu^{NEQ}}{2} F_{ik} H_{km} H_{nm} F_{jn} \tag{30} \]

with non-equilibrium modulus \(\mu^{NEQ} \). In the current paper, the material is assumed to be incompressible, with both elastic and inelastic deformations being volume-conservative. \(\det \mathbf{F} = \det \mathbf{F} = \det \mathbf{F} = 1 \).

Applying the free-energy functions (29) and (30) to Eqs. (13) and (18), we have the following constitutive relations:

\[P_{ik}(\mathbf{F}, \mathbf{D}) = \mu^{EQ} F_{ik} + \mu^{NEQ} H_{km} H_{nm} F_{jk} + \frac{1}{\epsilon} D_k D_n F_{kn} - p H_{ki}, \tag{31a} \]

\[\tilde{E}_k(\mathbf{F}, \mathbf{D}) = \frac{1}{\epsilon} \tilde{D}_n F_{kn} F_{ik}, \tag{31b} \]

where \(p \) is an undetermined hydrostatic pressure introduced by the incompressibility constraint. Alternatively, the constitutive relation may be expressed in terms of true quantities

\[\sigma_{ij} = \mu^{EQ} F_{ik} F_{jk} + \mu^{NEQ} H_{km} H_{nm} F_{ij} + \frac{1}{\epsilon} D_k D_j - p \delta_{ij}, \quad E_l = \frac{D_l}{\epsilon}. \tag{32} \]

The third term on the right-hand side of Eq. (32), \(D_k D_j / \epsilon \), is usually referred to as the Maxwell stress. This form of the electrostatic contribution to stress is the consequence of a specific free-energy function, and is not generally applicable to all materials. Only when the deformation and polarization are physically decoupled, the constitutive relation shown in Eq. (32) is equivalent to the usual approach of directly adding the Maxwell stress. Under the current assumption that the polarization of the material is always in equilibrium, an electrostatic contribution does not appear in the inelastic stress \(\mathbf{P}_{NEQ} \) or \(\mathbf{\sigma}_{NEQ} \). If the energy dissipation due to electric polarization is non-negligible (e.g. when polarization is accompanied by local viscoelastic rotation), the corresponding contribution should be included in the inelastic stresses.

To specify the evolution law for the inelastic deformation, we assume the viscous property of the material to be isotropic in the current state, so that the mobility takes the form

\[M_{ijkl} = \frac{1}{2\eta} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ij} \delta_{kl} \right). \tag{33} \]

When a constant viscosity \(\eta \) is used, the inelastic behavior of the material resembles that of Newtonian fluid.

6. Homogeneous deformation of a dielectric elastomer film

In this section, we will study the response of a viscoelastic dielectric to applied electric fields as an example of the theoretical framework developed in the current paper. The material is in the form of a thin film, which has been most widely used in applications. Let \(\lambda_1 \) and \(\lambda_2 \) be the two principal in-plane stretches of the film, and \(p_1 \) and \(p_2 \) be the stresses applied in the corresponding directions, as depicted in Fig. 1. Due to volume incompressibility, the stretch in the thickness direction is \(\lambda_3 \). We assume that the loading direction has not changed in the history, so that the principal directions of the inelastic stretches coincide with those of total stretches, and we will denote the principal inelastic stretches as \(\lambda_1', \lambda_2', \lambda_3' \). The external electric field \(\tilde{E} \) is only applied through the thickness. For simplicity, we assume the deformation to be homogeneous. Therefore, the nominal electric displacement \(\tilde{D} \) is also in the thickness direction. The critical condition for instability obtained under a homogeneous assumption is expected to be the upper bound of actual cases when inhomogeneous deformation is allowed.

To simplify mathematical expressions, we introduce the following dimensionless field variables:

\[p_1 = \frac{p_1}{\mu}, \quad p_2 = \frac{p_2}{\mu}, \quad \tilde{D} = \frac{\tilde{D}}{\sqrt{\mu \epsilon}}, \quad \tilde{E} = \frac{\tilde{E}}{\sqrt{\mu}}. \tag{34} \]

where \(\mu = \mu^{EQ} + \mu^{NEQ} \) is the instantaneous modulus of the material.

6.1. Instantaneous instability

Adopting the simple material model constructed in Section 5, we write the dimensionless free-energy density as

\[W \left(\lambda_1, \lambda_2, \lambda_1', \lambda_2' \right) = \tilde{E} \left(\lambda_1' + \lambda_2' + \frac{1}{\lambda_1' \lambda_2'} \right) + \frac{1}{2} \left(\frac{\lambda_1'}{\lambda_1} \right)^2 + \left(\frac{\lambda_2'}{\lambda_2} \right)^2 + \left(\frac{\lambda_1'}{\lambda_1} \right)^2 \left(\frac{\lambda_2'}{\lambda_2} \right)^2 + \frac{\tilde{D}^2}{2 \lambda_1' \lambda_2'} \tag{35} \]
where \(\chi = \mu^{EQ}/\mu \) is the ratio between the equilibrium and instantaneous moduli. The material parameter \(\chi \) represents physically the fraction of the polymer network that has time-independent deformation (Bergström and Boyce, 1998). The material is purely elastic when \(\chi = 1 \), and becomes a viscous fluid when \(\chi = 0 \).

The constitutive relations (31) specialize to
\[
\begin{align*}
P_1 &= \lambda_1 \left(\chi + \frac{1-\chi}{\lambda_1^2} \right) - \frac{1}{\lambda_1} \left[\chi + (1-\chi) \lambda_1^2 + D^2 \right] , \quad (36a) \\
P_2 &= \lambda_2 \left(\chi + \frac{1-\chi}{\lambda_2^2} \right) - \frac{1}{\lambda_2} \left[\chi + (1-\chi) \lambda_2^2 + D^2 \right] , \quad (36b) \\
\mathcal{E} &= \frac{D}{\lambda_1 \lambda_2} . \quad (36c)
\end{align*}
\]

The inelastic deformation of the material evolves with characteristic time \(\eta/\mu^{NEQ} \). Here we will use it to normalize time \(t \) by introducing a dimensionless time, \(\tau = t \mu^{EQ}/\eta \). Upon application of Eq. (33), we may reduce Eq. (25) to the following evolution equations of inelastic stretches:
\[
\begin{align*}
\frac{dt^*_1}{d\tau} &= \frac{l^*_2}{2} \left[2 \left(\frac{\lambda_1}{\lambda_2} \right)^2 - \left(\frac{l^*_1}{\lambda_2} \right)^2 - \left(\frac{l^*_1 l^*_2}{\lambda_1 \lambda_2} \right)^2 \right] , \quad (37a) \\
\frac{dt^*_2}{d\tau} &= \frac{l^*_1}{2} \left[2 \left(\frac{\lambda_2}{\lambda_1} \right)^2 - \left(\frac{l^*_2}{\lambda_1} \right)^2 - \left(\frac{l^*_1 l^*_2}{\lambda_1 \lambda_2} \right)^2 \right] . \quad (37b)
\end{align*}
\]

While the method described here is applicable to general cases, in the following discussion, we will look at a special case when the dielectric film is under equi-biaxial stress, such that \(\lambda_1 = \lambda_2 = \lambda, l^*_1 = l^*_2 = l^* \), and \(P_1 = P_2 = P \). The symmetry of the problem reduces the governing Eqs. (36) to
\[
\begin{align*}
P &= \lambda \left[\chi + (1-\chi) \lambda^{-2} \right] - \lambda^{-5} \left[\chi + (1-\chi) \lambda^{14} + D^2 \right] , \quad (38) \\
\mathcal{E} &= \lambda^{-4} \mathcal{D} , \quad (39)
\end{align*}
\]

Some representative solutions to the differential–algebraic system (38) and (39) are plotted in Fig. 4(a) and (b), for the cases when the film is stress-free, \(P = 0 \), and the applied voltage ramps up linearly with time. The responses to two loading rates are calculated: (a) \(d\mathcal{E}/d\tau = 10 \) and (b) \(d\mathcal{E}/d\tau = 0.2 \). The film is fully relaxed at \(\tau = 0 \), with the initial condition being \(l = l^* = 1 \). The material parameter \(\chi \) is taken to be 0.5 so that the elastic and inelastic contributions to the free energy are comparable. For the same material, when the voltage is applied at a relatively high rate, the inelastic deformation is small as shown in Fig. 4(a), and when the voltage is applied at a relatively low rate, the major part of the total deformation is inelastic as shown in Fig. 4(b). At the point where the state of the material becomes instantaneously unstable, the deformation rate diverges and the thickness of the film shrinks to 0 instantaneously—a behavior usually referred to as the pull-in instability in the context of elastic deformation states. At a higher loading rate, the critical nominal electric field applied is higher. The critical normalized electric field \(\mathcal{E}_c \approx 0.68 \) when \(d\mathcal{E}/d\tau = 10 \) is close to that of an elastic material (Zhao et al., 2007), while the critical normalized field is much lower when the voltage is applied at a relatively low rate. Although the achieved total stretch is larger at a lower loading rate, the elastic stretch which is elastically recoverable, i.e. the difference between the total stretch and the inelastic part, is actually lower. It should also be noted that even though the critical voltage is lower at a lower loading rate, the instantaneous instability still appears later in terms of time.

To study the dependence of the critical conditions for instantaneous instabilities on the inelastic deformation, we explicitly calculate the critical conditions through the determinant of the Hessian. It can be verified that under equi-biaxial stress \(\mathcal{P} \), the critical condition, \(det\mathcal{P} = 0 \), is equivalent to
\[
\begin{align*}
\mathcal{D}_c^2 &= \frac{d\mathcal{P}_{11}}{d\mathcal{P}_{22}} = \frac{1}{3} \frac{l^*}{\chi} \left[\chi + (1-\chi) \lambda^{-2} \right] + \frac{5}{3} \left[\chi + (1-\chi) \lambda^{14} \right] , \quad (40) \\
\mathcal{P} &= \frac{2}{3} \frac{l^*}{\chi} \left[\chi + (1-\chi) \lambda^{-2} \right] - \frac{8}{3} \frac{l^*}{\chi} \left[\chi + (1-\chi) \lambda^{14} \right] . \quad (41)
\end{align*}
\]

In a special case, either when the material is purely elastic \(\chi = 1 \) or when the voltage is applied instantaneously so that the material has not deformed inelastically \(\lambda = 1 \), the critical conditions (40) and (41) fully recovers those of an elastic dielectric (Zhao et al., 2007; Norris, 2007). In general cases, the critical values of the nominal electric field and the stretch are both...
dependent on the amount of inelastic stretch \(\lambda_i \), which in turn is highly dependent on the deformation or loading history of the material. Here in order to study the instantaneous stability in the state of interest, we treat \(\lambda_i \) as an input parameter, and plot the critical conditions as functions of it in Fig. 4(c) and (d).

We first look at the case when no pre-stress is applied, \(P = 0 \). The corresponding critical normalized electric field \(E_c \) is also plotted in Fig. 4(d). The dimensionless material parameter \(\chi \) which characterized the relative significance of the equilibrium polymer network is varied from 0.1 to 0.9. It is clear from Fig. 4(c) and (d) that for a same material, larger inelastic deformation will lead to a larger critical stretch (though the recoverable stretch is actually smaller), but the critical voltage for instantaneous instability is lower. Accounting for its dielectric strength, a material with low inelastic deformation may experience breakdown before the instantaneous instability which happens otherwise at a higher voltage. This result agrees with experimental observations (Plante and Dubowsky, 2006) in which a material loaded at high rate is often subject to electric breakdown, while it is subject to pull-in instability more often at a lower rate when inelastic deformation is significant.

6.2. Effects of pre-stress

It has been appreciated through experiments that pre-stretching a dielectric elastomer may greatly enhance its actuation performance (e.g. Pelrine et al., 2000a, 2000b; Kofod, 2008). The effects have been attributed to the increase in dielectric breakdown strength (Kofod et al., 2003; Plante and Dubowsky, 2006), the delay in the pull-in instability of an equilibrium state (Zhao et al., 2007), and the increase in the tangential modulus (Zhao et al., 2007). Although the effect of the delay after pre-stress on the performance (Plante and Dubowsky, 2006) indicates some viscoelastic property, the pre-stress effects are seldom analyzed in the scope of viscoelasticity.

If both the pre-stress \(P \) and the voltage are instantaneously applied, it can be seen by taking \(\lambda_i = 1 \) in Eqs. (40) and (41) that the critical condition for a viscoelastic dielectric is identical to that of elastic dielectrics (Zhao et al., 2007; Zhao and Suo, 2007). However, this limiting case is of less practical importance since the assembly consumes time and the devices shall also have a reasonable lifetime by design. In most applications, pre-stress is applied by stretching the polymer film to a certain level and then fixing it to a semi-rigid frame, and the voltage is applied to an area inside the frame. In contrast to the treatment in some existing analyses (e.g. Zhao and Suo, 2007), such a setup provides neither constant stress nor constant strain. In fact, the deformation field in the film is highly inhomogeneous. While a detailed numerical analysis is possible by implementing the current theory into finite-element programs, here we introduce the following simplifications to provide a qualitative analysis.

Fig. 4. Evolution of the through-thickness stretch \(\lambda \) (solid curve) and the inelastic stretch \(\lambda_i \) as functions of the normalized applied voltage \(E \), at a relatively high loading rate (a) and a relatively low loading rate (b). The solutions are plotted up to the points approximately where instantaneous instabilities take place. The critical stretch \(\lambda_c \) (c) and normalized voltage \(E_c \) (d) for instantaneous instabilities are plotted as a function of the inelastic stretch \(\lambda_i \). The responses of three materials with the dimensionless parameter \(\chi \) ranging from 0.1 (elasticity dominated) to 10 (viscosity dominated) are shown.
on the trends. We assume a uniform deformation in the film before a voltage is applied. At \(\tau = 0 \), an equi-biaxial pre-stretch \(\lambda(0) = \lambda_{\text{pre}} \) is applied instantaneously to the film. During the interval between the pre-stretch and the application of electric field, the dielectric-elastomer film relaxes under the constant stretch \(\lambda_{\text{pre}} \); the stress decreases while the inelastic stretch \(\lambda^i \) increases, as shown in Fig. 5(a) and (b). At \(\tau = \tau_0 \), a voltage is applied with a relatively high rate, \(d\lambda/dt = 10 \). In this stage, we still assume the region where the voltage is applied undergoes a homogeneous deformation, and the surrounding region provides a constant nominal traction \(P \) to the boundaries.

Under these assumptions, the governing Eqs. (38) and (39) are still applicable to the actuated region. Using material parameter \(\chi = 0.5 \), we solve Eqs. (38) and (39) under three levels of pre-stretches, with \(\lambda_{\text{pre}} = 1, 2, \) and \(3 \), and plot the solutions in Fig. 5(c) for the short-delay case (\(\tau_0 = 0.05 \)) and (d) for the long-delay case (\(\tau_0 = 2 \)). To enable comparison, all stretches are normalized by the initial stretches and plotted as \(\lambda/\lambda_{\text{pre}} \). The solutions are plotted from the application of voltage to the point of instantaneous instability. The onsets of the instability, evaluated directly using the Hessian in Eqs. (40) and (41), are marked with “\(\times \)” in the figures. When no pre-stretch is applied, \(\lambda_{\text{pre}} = 1 \), the solution recovers that of the stress-free case in Fig. 4(a). Upon pre-stretching, the performance of the dielectric film is enhanced regardless of the relaxation time, in the sense that a larger actuation strain can be achieved under the same normalized electric field, and the instantaneous (pull-in) instabilities are delayed in terms of actuation strain. However, a marked difference is shown between the cases of short and long relaxations. The enhancement of the pre-stretch followed by short relaxation approximately doubles that of the same pre-stretch but with long relaxation. If we further look at only the elastically recoverable part of the stretch, \(\lambda^r = \lambda/\lambda^i \), the performance of the materials after long relaxation will be diminished even more, since a significant part of the actuation stretch is irreversible. This trend agrees with experimental observations (Plante and Dubowsky, 2006). According to the current model, the negative effect of delay between pre-stretch and loading is mainly due to two mechanisms: the relaxation of membrane stress and the buildup of inelastic deformation. The difference shown in Fig. 5 is the response of a material with parameter \(\chi = 0.5 \). For a material that is more fluid-like, the dependence on the relaxation time is expected to be more prominent.

6.3. Dynamic response to a cyclic load

The dynamic responses of a dielectric elastomer film to a cyclic electric field are studied as a final example for the usage of the model. Although the level of pre-stress, the payload, as well as the method of clamping, can all affect the dynamic property

![Fig. 5](image_url)

Fig. 5. (a) Relaxation of the dimensionless stress in the film \(P \) after an equi-biaxial pre-stretch \(\lambda_{\text{pre}} \) of various levels is applied instantaneously at \(\tau = 0 \). The material parameter \(\chi \) is taken to be 0.5. Therefore, the long-term stress is approximately half of the instantaneous level. (b) Evolution of the in-plane inelastic stretch \(\lambda^i \) after the application of pre-stretch \(\lambda_{\text{pre}} \). (c) Relation between the normalized voltage applied \(E \) and the in-plane stretch relative to the pre-stretch. The voltage is applied shortly after the pre-stretch, at \(\tau_0 = 0.05 \). (d) Relation between the normalized voltage and the relative stretch in the case when the film is relaxed for a longer time, \(\tau_0 = 2 \), before loading. The states of instantaneous instability are marked as “\(\times \)” in both (c) and (d).
of a dielectric elastomer, we will, for the purpose of demonstration and qualitative prediction, stipulate the homogeneous assumption and study the special case when the film is stress-free.

Writing the normalized electric field into a sinusoidal function, \(E = E_0 \sin(\omega t) \), with \(\omega \) being the dimensionless frequency, one can easily evolve the inelastic stretch \(\lambda^i \) and the total stretch \(\lambda \) by integrating Eqs. (38) and (39) numerically. A set of representative results are presented in Fig. 6. In the solutions plotted, the amplitude of the nominal electric field \(E_0 \) is set to be 0.5, so that the material is not subject to instantaneous instability within the selected frequency range.

When the elastomer is driven by an AC voltage at a relatively high frequency, its deformation would keep in phase with the electric field, but the actuation strain is relatively small, as shown in Fig. 6(a). During the cyclic load, since the actuation strain only depends on the magnitude of the voltage applied, the frequency of the stretch doubles that of the electric field, and the mean value of stretch drifts away from the initial equilibrium state. The inelastic deformation, shown with dashed curves, evolves almost randomly at a short time scale, but approaches at a relatively large time scale to a level which approximately equals the mean stretch. On the trajectory plots of \(E - \lambda \) and \(E - D \) that are shown in Fig. 6(b) and (c), respectively, no clear limit cycle is shown, and the system shows insignificant hysteresis. Besides the inelastic deformation caused by the average effect of the AC electric field, the response of the elastomer to a high-frequency cyclic load is similar to that of an elastic dielectric.

When the driving voltage alternates at an intermediate frequency, the stretch stabilizes in 1–2 cycles as in Fig. 6(d). The total stretch \(\lambda \) and the inelastic stretch \(\lambda^i \) are both approximately sinusoidal functions of time. While the amplitude of

![Fig. 6](image-url)

Fig. 6. (a) (d) (g) Total stretch \(\lambda(t) \) and inelastic stretch \(\lambda^i(t) \) in a dielectric elastomer film, in response to the applied cyclic nominal electric field, \(E(t) = E_0 \sin(\omega t) \). (b) (e) (h) Trajectory plots of the stretch \(\lambda(t) \) and the applied nominal electric field \(E(t) \) during the process. (c) (f) (i) Trajectory plots of the dimensionless nominal electric displacement \(D(t) \) and nominal electric field \(E(t) \). Three different dimensionless frequencies are used in the calculation: \(\omega = 10 \) for (a–c), \(\omega = 1 \) for (d–f), and \(\omega = 0.1 \) for (g–i).
When the dielectric elastomer is actuated by a voltage alternating at a relatively low frequency, the magnitude of the cyclic actuation strain is much larger, and the stretch is almost fully inelastic, i.e. \(\lambda \approx \lambda' \), as shown in Fig. 6(g). Even though the stretch and the applied voltage are in phase with each other, hysteresis loops can still be observed on the \(E - \lambda \) and \(E - D \) plots in Fig. 6(h) and (i), especially when the stretch is relatively large. This is mainly due to the geometric nonlinearity introduced by finite deformation. The dynamic system is highly nonlinear, with the output strain far from sinusoidal while the input voltage is still sinusoidal. The asymmetry in the shape of the cyclic function \(\lambda(t) \) leads to the hysteresis on the \(E - D \) plot, and thus the irreversible energy loss in each cycle. Evidently, small-deformation linear viscoelasticity should not be directly applied to the case demonstrated here.

Although the \(E - \lambda \) and \(E - D \) hysteresis loops of a viscoelastic dielectric share some similarities with those of ferroelectric ceramics, they differ in intrinsic mechanisms and some subsequent behaviors. While ferroelectricity is originated from the nonlinearity in the physical polarization property of the material, the hysteresis in a dielectric elastomer is due to the combined effect of nonlinear geometry and inelastic deformation. Therefore, the hysteresis of a ferroelectric appears even in the relation between true electric displacement and true electric field, while no hysteresis is shown for a dielectric elastomer when plotted in true fields. While the \(E - D \) curve of a ferroelectric bends towards the \(E \)-axis due to saturation in polarization, the \(E - D \) curve of a dielectric elastomer bends towards the \(D \)-axis because of finite deformation. On the polarization-electric field hysteresis of a ferroelectric, the maximum difference in polarization between the two branches usually appears near \(E = 0 \), and the corresponding polarization is often referred to as the spontaneous polarization. By contrast, a dielectric elastomer shows no hysteresis or spontaneous polarization under a low electric field—the hysteresis only appears at higher electric field and finite deformation.

Under the assumptions of the simple material model, the energy loss in each cycle of the \(E - D \) hysteresis loop is due exclusively to viscoelastic dissipation. This may not hold true for all materials. For example, the polarization process of polymers with large polar groups may involve local irreversible rotations and thus dissipates energy. Nevertheless, the model can easily be extended to include the dissipation in polarization when needed. On the other hand, the theory enables further experiments to be carried out on probing the coupled electromechanical behaviors of materials. For example, measuring the hysteresis of the same material under pure mechanical, pure electrical, and combined loading conditions independently may help identifying different sources of energy dissipation, and may provide insight into some complex phenomena.

7. Concluding remarks

By integrating a recently formulated theory of deformable dielectrics into the framework of non-equilibrium thermodynamics for continuums, this paper develops a general field theory for the coupled electro-viscoelastic behavior of dielectric elastomers. The field theory inherits the merit of traditional continuum mechanics by having the main framework and field equations material-independent, and some interchangeable material-specific modules that are readily measurable from experiments. The adaptiveness of the theory makes it not only applicable to all existing materials, but also to emerging new materials. For demonstrative purposes, a simple material law is proposed under the theoretical framework. With physically uncoupled polarization and deformation, the simple model is equivalent, to some extent, to the approach of adding Maxwell stress to the total stress in the formulation of finite-deformation viscoelasticity while leaving the inelastic stress unchanged. The material law is further applied to study the dynamic responses of a dielectric-elastomer film, as well as the influence of pre-stress. Despite the simplicity of the material model prescribed, some basic phenomena have been explained, and the results predicted agree qualitatively with existing experiments. Moreover, the stability of a general non-equilibrium state of a viscoelastic dielectric is studied. The idea of instantaneous instability, analogous to the instability of plastic deformations in crystals, has been introduced and related to an important failure mode which is known as the pull-in instability in dielectric elastomers.

Acknowledgement

The author acknowledges the support from the National Science Foundation through Grant no. CMMI-0900342.

References

References
