1. Suppose that \(X_i \sim N\left(\frac{1}{i}, \left(\frac{1}{i}\right)^2\right) \) (the standard deviation is \(1/i \)). Prove or disprove that these variables converge in distribution.

2. Suppose that \(\{Y_i\} \) is a sequence of iid random variables with \(\text{E} Y_i = 1 \) and \(\text{Var} Y_i = 1 \). Let \(W_i = \mu_i Y_i \) for each \(i \) and \(S_n = \sum_{i=1}^{n} W_i \).

 a) What is a marginal distribution for \(Y_i \) under which \((S_n - \text{ES}_n) / \sqrt{\text{Var} S_n} \to^d N(0,1) \) for any (not identically 0) sequence of reals \(\{\mu_i\} \)?

 b) Give a sufficient condition on a decreasing sequence of positive reals \(\{\mu_i\} \) such that for any marginal distribution for \(Y_i \), \((S_n - \text{ES}_n) / \sqrt{\text{Var} S_n} \to^d N(0,1) \). (Argue that your condition is indeed sufficient.)

3. Consider independent sequences of random variables on the same probability space, \(\{X_n\} \) and \(\{N_n\} \) with the properties that the \(N_n \) are positive integer valued, \(X_n \to^d X \) and \(N_n \to \infty \) a.s.

 Argue carefully that \(X_{N_n} \to^d X \)

 using conditioning and characteristic functions.

4. Suppose that \(\{X_i\} \) is a sequence of random variables taking values in \([a,b]\) for real numbers \(a < b \) and that \(X_i \to^d X \)

 Argue carefully that the moment generating functions for the \(X_i \) converge to that of \(X \).

 That is, argue carefully that for \(t \in \mathbb{R} \)
 \[\text{E} \exp(tX_i) \to \text{E} \exp(tX) \]
5. Suppose that \(X \sim \text{Exp}(1) \) independent of \(W \sim \text{Ber}\left(\frac{1}{2}\right) \). Find the characteristic function of \(Y = 2WX - X \) and use it to argue that \(Y \) has a distribution symmetric about 0. (The \(\text{Exp}(1) \) characteristic function is \(\phi(t) = (1 - ut)^{-1} \).)

6. Suppose that \(X_1, X_2, \ldots, X_n \) are iid Binomial \((m, p)\) random variables, and neither \(m \geq 1 \) nor \(p \in (0,1) \) is known.

a) Identify a minimal sufficient statistic for the parameter \((m, p)\) and argue carefully that it is indeed minimal sufficient. (This is way harder than I intended. My original "solution" was wrong.)

b) For the case of \(n = 2 \), \(T \) your minimal sufficient statistic from a), and \(g(x_1, x_2) : \{0,1,2,\ldots\}^2 \to \mathbb{R} \), give an explicit formula for
\[
E\left[g(X_1, X_2) | \sigma(T) \right]
\]
and demonstrate that your prescription doesn't depend upon the parameter \((m, p)\).

7. Suppose that \(U, V, \) and \(W \) are independent random variables, \(U \sim \text{N}(\theta, 1) \), \(V \sim \text{N}(\theta, 4) \), and \(W \sim \text{Ber}\left(\frac{1}{2}\right) \). Define \(Y = WU + (1 - W)V \) and \(X = (W, Y) \). Prove or disprove that \(X \) is complete and sufficient. (The intention was that the model under consideration is that for \(X \), not that for \((U, V, W)\). But I marked either way.)

8. Use a probabilistic argument to identify \(\lim_{n \to \infty} \left(\cos\left(\frac{t}{\sqrt{n}}\right) \right)^n \). (Argue carefully that your answer is correct.)