For $x = 5$, $\lambda'(p) = \frac{5}{p} > 0$ and $\lambda(p)$ is increasing.

So for $\Theta = [0, 1]$, the MLE is $\frac{X}{5}$.

One context in which the likelihood equations are especially nice is the exponential family - for X_1, X_2, \ldots, X_n:

$$f(x | \eta) = \exp \left(-n A(\eta) + \sum_{i=1}^{n} h(x_i) \exp \sum_{j=1}^{k} \eta_j \left(\sum_{i=1}^{n} T_j(x_i) \right) \right)$$

So

$$L(\eta) = -n A(\eta) + \sum_{i=1}^{n} h(x_i) \exp \sum_{j=1}^{k} \eta_j \left(\sum_{i=1}^{n} T_j(x_i) \right)$$

and

$$\frac{\partial}{\partial \eta_j} L(\eta) = - \frac{\partial}{\partial \eta_j} A(\eta) + \sum_{i=1}^{n} T_j(x_i)$$

By corollary 1.5.1, B+D, $A \in E$ has nonempty interior.

Thus, the jth of these equations is

$$-n E_\eta T_j(X) + \sum_{i=1}^{n} T_j(x_i) = 0$$

$$E_\eta T_j(X) = \frac{1}{n} \sum_{i=1}^{n} T_j(x_i)$$

The likelihood equation.
So, the ML estimating equation in an exponential family with nonempty interior in E is "set the theoretical mean of T equal to the empirical mean of $T" - a natural exponential family is "MOM".

The question of whether there must be a solution to the exponential family likelihood equations and if any solution must be unique and maximize the likelihood is discussed in B&J Section 2.3 - on simple result from there is

Corollary 2.3.2 If the equations

$$E_y T_j(X) = \frac{1}{n} \sum_{i=1}^{n} T_j(x_i) \quad j = 1, 2, \ldots, k$$

have a solution \hat{y} in the interior of E it is the unique MLE of y.

Both for application in exponential families where the "natural" parameterization isn't the "standard" or "usual" parameterization and in other contexts, there is the lemma

Lemma (Problem 2.2.16a)

Clearly $\hat{\theta}$ maximizes $f(x|\theta)$ over Θ.

$\Rightarrow \hat{\gamma} = h(\hat{\theta})$ maximizes $f^*(x|\gamma)$ over $h(\Theta)$.

![Diagram](image-url)
So, e.g., \(\hat{\theta} \) MLE of natural parameter \(\theta \) can be written as \(h(\hat{\theta}) = \theta \) for a 1-1 function \(h \). Then \(\hat{\theta} = h(\hat{\theta}) \) is the MLE of \(\theta \).

Solving the likelihood equations

\[\nabla l(\theta) = 0 \]

is "just" a numerical analysis problem — various iterative procedures (bisection, Newton–Raphson, etc.) might be applied to do the job — mostly. Their discussion is not a topic for 543 — one procedure for the problem has some probabilistic/statistical content and can/should be touched here is the "EM algorithm" —

Basic idea: Sometimes an observable \(Y \) has a nasty log likelihood \(l_Y(\theta) \) but could be thought of as distributionally equivalent to \(S(X) \) for some (potentially computationally fictitious) \(X \) for which computation and optimization of

\[E_\theta \left[l_X(\theta) \mid S(X) = y \right] \]

is feasible — In such cases, I might

(1) pick some starting value \(\theta^{(0)} \)
1. Find
 \[E_{\Theta^{(0)}} \left[\ell(\Theta) \mid S(X) = y \right] \]

M-step
2. Optimize this as a function of \(\Theta \) to find \(\Theta^{(1)} \)
3. Replace \(\Theta^{(0)} \) with \(\Theta^{(1)} \)
4. Iterate to convergence

Example

\[X \sim \exp(\lambda) \]

\[Y = X I[1 < x < 2] + 1 I[x \leq 1] + 2 I[2 \leq x] \]

(\(Y \) a censored version of \(X \)) — Suppose \(Y_1, Y_2, \ldots, Y_n \) iid with this CDF.

\[f(y \mid x) = \begin{cases}
1 - e^{-\lambda} & \text{if } y = 1 \\
\lambda e^{-\lambda y} & 1 < y < 2 \\
e^{-2\lambda} & y = 2
\end{cases} \]

If \(Y_i = 1 \) then \(X_i \) has density \(\alpha x e^{-\lambda x} \) on \((0, 1]\) and if \(Y_i = 2 \) \(X_i \) has density \(\alpha \lambda e^{-\lambda x} \) on \([2, \infty)\).

\[\ell_X(\lambda) = n \log \lambda - \lambda \sum X_i \]

Then for a particular \(\lambda_0 \) conditioned on \(Y = y \)
\[\sum_{i=1}^n \text{has mean} \]

\[\sum_{y_i \in \{1, 2\}} y_i + \# \left[y_i = 1 \right] E_{\lambda_0} \left[X | X \leq 1 \right] \\
+ \# \left[y_i = 2 \right] E_{\lambda_0} \left[X | X > 2 \right] \]

\[E_{\lambda_0} \left[X | X \leq 1 \right] = \frac{1}{1 - e^{-\lambda_0}} \int_0^1 x e^{-\lambda_0 x} \, dx \]

\[= \frac{1}{1 - e^{-\lambda_0}} \left[-e^{-\lambda_0 x} \right]_0^1 + \int_0^1 e^{-\lambda_0 x} \, dx \]

\[= \frac{1}{1 - e^{-\lambda_0}} \left[-e^{-\lambda_0} + \frac{1}{\lambda_0} \right] \]

\[= \frac{1}{\lambda_0} - \frac{e^{-\lambda_0}}{(1 - e^{-\lambda_0})} \]

\[E_{\lambda_0} \left[X | X > 2 \right] = \frac{1}{e^{-2\lambda_0}} \int_2^\infty x e^{-\lambda_0 x} \, dx \]

\[= e^{2\lambda_0} \left[-xe^{-\lambda_0 x} \right]_2^\infty + \int_2^\infty e^{-\lambda_0 x} \, dx \]

\[= e^{2\lambda_0} \left[2e^{-2\lambda_0} + \frac{1}{\lambda_0} e^{-2\lambda_0} \right] \]

\[= 2 + \frac{1}{\lambda_0} \]

i.e. the \(\lambda_0 \) conditional mean of \(l_X(\lambda) \) given \(Y = y \) is

\[n \log \lambda - \lambda \left[\frac{\sum_{y_i \in \{1, 2\}} y_i}{\text{y belongs to } \{1, 2\}} \right] \left(\frac{\lambda_0}{1 - e^{-\lambda_0}} \right) \]

\[+ \# \left[y_i = 2 \right] \left(2 + \frac{1}{\lambda_0} \right) \]

\[\text{E-step} \]
which is maximized at \(\lambda'' = \frac{n}{n} \) [above]

So ultimately, an iterative G-M algorithm sets

\[
\lambda^{(i+1)} = \frac{n}{\sum_{y_i \in \{1,2\}} y_i + \# \{ y_i = 1 \} \left(\frac{1}{\lambda'} - \frac{e^{-\lambda'}}{1 - e^{-\lambda'}} \right) + \# \{ y_i = 2 \} \left(2 + \frac{1}{\lambda'} \right)}
\]

and iterates to convergence as opposed to straight-up optimization of

\[
\ell_{\lambda}(\lambda) = \# \{ y_i = 1 \} \log (1 - e^{-\lambda}) + \# \{ y_i < 2 \} \log \lambda - \lambda \sum_{y_i \in \{1,2\}} y_i + \# \{ y_i = 2 \} \epsilon \lambda
\]
Example - k possible outcomes, n independent identical trials

\[P_j = \text{probability that any trial produces outcome } j \]

\[X_{ij} = I \left[\text{trial } i \text{ produces outcome } j \right] \]

\[n_j = \sum_{i=1}^{n} X_{ij} = \# \text{ of trials producing outcome } j \]

Suppose that \(p \) has each \(p_i \geq 0 \) with \(\sum p_i = 1 \)

\[f(x \mid p) = \frac{k}{n} \sum_{j=1}^{n} n_j \]

\(f(x \mid p) = \left(\sum_{j=1}^{n} x_{ij} = 1, \, n_j \geq 0 \text{ integers} \right) \)

MLE for \(p \) is (as it turns out)

\[\hat{p} = \left(\frac{n_1}{n}, \frac{n_2}{n}, \ldots, \frac{n_k}{n} \right) \]

But now, what if, e.g. \(k = 4 \) and all we observe is this:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Information Available</th>
<th>In Terms of X's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>outcome is 1</td>
<td>(X_{11} = 1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(X_{23} = 1)</td>
</tr>
<tr>
<td>3</td>
<td>2 or 4</td>
<td>(X_{32} + X_{34} = 1)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(X_{42} = 1)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>(X_{53} = 1)</td>
</tr>
<tr>
<td>6</td>
<td>2 or 3</td>
<td>(X_{62} + X_{63} = 1)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(X_{71} = 1)</td>
</tr>
<tr>
<td>8</td>
<td>1 or 2</td>
<td>(X_{81} + X_{82} = 1)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>(X_{92} = 1)</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>(X_{104} = 1)</td>
</tr>
</tbody>
</table>
That is, I don't get the 10 \(X_i = (X_{i1}, X_{i2}, \ldots, X_{i4}) \) but, e.g.:

\[
Y_3 = (X_{31}, X_{32}, X_{32}+X_{34})
\]

The likelihood function based on \(Y_i \)'s (information available) not \(X_i \)'s is

\[
L_Y(p) = p_1^2 p_2^2 p_3^2 (1 - p_1 - p_2 - p_3) \times \frac{(1 - p_1 - p_2)(p_2 + p_3)(p_1 + p_2)}{p_2 + p_4}
\]

and I could probably optimize \(L_Y(p) \) or
\[
\ell_Y(p) = \log L_Y(p)
\]
via some numerical method.

Another possibility is to use the EM algorithm.

\[
\ell_X(p) = n_1 \log p_1 + n_2 \log p_2 + n_3 \log p_3 + n_4 (1 - p_1 - p_2 - p_3)
\]

For the data in hand this is

\[
= (2 + X_{81}) \log p_1 + (2 + X_{82} + X_{62} + X_{82}) \log p_2 \\
+ (2 + X_{63}) \log p_3 + (1 + X_{84}) \log (1 - p_1 - p_2 - p_3)
\]

For any particular \(p_0 = (p_01, p_02, p_03 + p_04) \)

\[
E_{p_0} \left[X_{81} \mid Y = \text{data in hand} \right] = \frac{p_01}{p_01 + p_02}
\]

\[
E_{p_0} \left[X_{82} \mid Y = \text{data in hand} \right] = \frac{p_02}{p_02 + p_04}
\]

\[
E_{p_0} \left[X_{62} \right] = \frac{p_02}{p_02 + p_03}
\]
\[E_{P_0} \left[X_{82} \right] = \frac{P_{o_1}}{P_{o_1} + P_{o_2}} \]
\[E_{P_0} \left[X_{83} \right] = \frac{P_{o_3}}{P_{o_2} + P_{o_3}} \]
\[E_{P_0} \left[X_{84} \right] = \frac{P_{o_4}}{P_{o_2} + P_{o_4}} \]

Then,
\[E_{P_0} \left[\log(P) \mid Y=\text{data in hand} \right] = \frac{b(p_0)}{a(p_0)} \]
\[= \left(2 + \frac{P_{o_1}}{P_{o_1} + P_{o_2}} \right) \log p_1 + \left(2 + \frac{P_{o_2}}{P_{o_2} + P_{o_4}} \right) \log p_2 + \left(2 + \frac{P_{o_3}}{P_{o_2} + P_{o_3}} \right) \log p_3 + \left(1 + \frac{P_{o_4}}{P_{o_2} + P_{o_4}} \right) \log \left(1 - p_1 - p_2 - p_3 \right) \]
\[c(p_0) + d(p_0) \]

Note
\[a(p_0) + b(p_0) + c(p_0) + d(p_0) = 10 = n \]
\[P^{(i+1)} = \left(\frac{a^{(i)} + 1}{10}, \frac{b^{(i)} + 1}{10}, \frac{c^{(i)} + 1}{10}, \frac{d^{(i)} + 1}{10} \right) \]
iterate to a fixed point

BTD give some arguments as to why EM might work — see, in particular, Lemma 2.4.1. That says that at each step \(h_y(\Theta) \) never decreases — the standard complaint with EM is that its convergence is often very slow — you need a good starting point and if other methods are possible they may be faster.
One matter that should be raised regarding EM is that B+D phrase Their version of it concerns not

\[E_{\theta_0} [l_x(\theta) \mid Y=y] \]

but rather

\[E_{\theta_0} [l_x(\theta) - l_x(\theta_0) \mid Y=y] \]

sometimes I'll be able to compute the 2nd when I couldn't compute the 1st - and optimization at the first is equivalent to optimization of the 2nd

B+D give some arguments why EM might work - see, in particular, Lemma 2.4! That says that at each step \(l_y(\theta) \) never decreases - the standard complaint about EM is that its convergence is often very slow - you need a good starting point and if other methods are possible, they may be faster -

Bayes Estimators

we've said repeatedly that where \(g(\theta) \) specifies

\[g(\theta \mid x) \propto L_x(\theta)g(\theta) \]

and that characteristics of the posterior serve as estimators of \(y(\theta) \) - e.g.
under SEL, the Bayes estimator of $Y(\theta)$ is

$$\delta(x) = E \left[Y(\theta) \mid X = x \right]$$

under AEL, the Bayes estimator of $Y(\theta)$ is

$$\delta(x) = \text{median of the den of } Y(\theta) \mid X = x$$

under WEL with weight function $W(\theta) \geq 0$, the Bayes estimator of $Y(\theta)$ is

$$\delta(x) = \frac{E \left[Y(\theta)W(\theta) \mid X = x \right]}{E \left[W(\theta) \mid X = x \right]}$$

In fact, this story can sometimes be generalized by not requiring $g(\theta)$ to specify a probability den.

Example: $X \sim N(\theta, 1)$, $g(\theta) = 1, \int_{-\infty}^{\infty} \infty \theta = \infty$.

$$L_x(\theta)g(\theta) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}(x-\theta)^2\right) \cdot 1$$

and we can use $L_x(\theta)g(\theta)$ to specify a "posterior" $N(\bar{x}, 1)$ and even though $f(x|\theta)g(\theta)$ doesn't define a (joint) probability den for (X, θ) — note that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}(x-\theta)^2\right) dx d\theta = \int_{-\infty}^{\infty} 1 \ d\theta = \infty$$
What is (Bayes) optimal is in principle "clear":

The problem of actually computing characteristics of a distribution with density proportional to

\[L(\theta)g(\theta) \]

Note that even finding an exact density for the posterior requires finding

\[\int L(\theta)g(\theta) \, d\theta \]

the normalizer for the function \(L(\theta)g(\theta) \).

Modern Bayes computation is based on simulation to substitute for calculus - e.g. if I am interested in

\[Q = \int q(\theta)g(\theta|x) \, d\theta \]

for some \(q: \mathbb{R}^k \to \mathbb{R} \) and can somehow generate \(\theta^*_1, \theta^*_2, \ldots \) iid \(G(\theta|x) \) I might approximate \(Q \) by

\[\hat{Q}_n = \frac{1}{n} \sum q(\theta^*_i) \]

relying on the LLN to conclude that

\[\frac{1}{n} \sum q(\theta^*_i) \xrightarrow{P} Q \]

(e.g. I might set \(\theta = (\theta_1, \theta_2) \) have \(q(\theta) = \theta \), or \(q(\theta) = I[\theta < \theta_2] \)

The problem with this idea is that naive ways of doing simulation would require that I know

\[\int L(\theta)g(\theta) \, d\theta \]

in order to simulate the \(\theta^*_i \).

Happily there is the famous "rejection algorithm"