The application here is that if \(\Theta \in \mathbb{R}^k \), for a nicely behaved "MLE" \(\hat{\Theta}_n \) with

\[
I_n \xrightarrow{k \times k} \sqrt{n} (\hat{\Theta}_n - \Theta) \xrightarrow{d} \mathcal{N}_k(0, I^{-1}(\Theta))
\]

means

\[
\sqrt{n} (\hat{\Theta}_n - \Theta)' (n I^{-1}(\Theta))^{-1} \sqrt{n} (\hat{\Theta}_n - \Theta) \xrightarrow{d} \chi^2_k
\]

\((\hat{\Theta}_n - \Theta)' n I^{-1}(\Theta) (\hat{\Theta}_n - \Theta)\)

and so an (unusable) confidence set for \(\Theta \) is

\[
\{ \Theta | (\hat{\Theta}_n - \Theta)' (n I^{-1}(\Theta)) (\hat{\Theta}_n - \Theta) < c \}
\]

This involves the unknown \(I_1 \) - two practical fixes are then

1) Use of the "Expected FI" - i.e. replace \(I_1(\Theta) \) by \(I_n(\hat{\Theta}_n) \)

2) Use of the "Observed FI" - i.e. Think with

\[
H_n(\Theta) = \left(\frac{\partial^2 \ell_n(\Theta)}{\partial \Theta_i \partial \Theta_j} \right)_{k \times k}
\]

the Hessian matrix for the log likelihood

that \(H_n(\Theta) \) is a sum of iid terms and it's
plausible that
\[-\frac{1}{n} H_n(\theta) \overset{P_0}{\to} \mathcal{I}_1(\theta)\]
and then further that
\[-\frac{1}{n} H_n(\hat{\theta}_n) \overset{P_0}{\to} \mathcal{I}_1(\theta)\]
so that one might well replace \(n\mathcal{I}_1(\theta)\) with
\[n (-\frac{1}{n} H_n(\hat{\theta}_n)) = -H_n(\hat{\theta}_n)\]
to get the approximate confidence set for \(\theta\)
\[
\{\theta \mid (\hat{\theta}_n - \theta)(-H_n(\hat{\theta}_n))(\hat{\theta}_n - \theta) < c^2\}
\]

In this multi-parameter context I might have in mind inference for only some sub-vector of \(\theta\), say \(\theta_i\) of dimension \(l < n - l\) suppose
\[
\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_k \end{pmatrix}_{k \times 1} \quad \text{and} \quad \hat{\theta}_n = \begin{pmatrix} \hat{\theta}_{i1} \\ \hat{\theta}_{i2} \\ \vdots \\ \hat{\theta}_{ik} \end{pmatrix}_{k-l \times 1}
\]
and my primary interest is in \(\theta_i\) - I need to be careful as I think about using MVN stuff to do inference here.

Covariance matrix for approximating
\[\text{as for } \hat{\theta}_n\]
\[
= \mathcal{I}^{-1}(\theta) = (n\mathcal{I}_1(\theta))^{-1}
\]
\[
\approx (n\mathcal{I}_1(\hat{\theta}_n))^{-1}
\]
\[
\approx (-H_n(\hat{\theta}_n))^{-1}
\]
Then, the covariance matrix for the approximating dens for $\hat{\Theta}_n$ is

upper left $L \times L$ block of $\mathbb{I}^{-1}(\Theta) = (n \mathbb{I}_L(\Theta))^{-1}$

upper left $L \times L$ block of $(n \mathbb{I}_L(\hat{\Theta}_n))^{-1}$

upper left $L \times L$ block of $(-n \mathbb{I}_L(\hat{\Theta}_n))^{-1}$

and these blocks are NOT in general the inverses of the upper left blocks of the matrices inside the () above.

The folklore is that in all this using observed rather than expected \mathbb{I} does a better job of producing actual coverage probability close to nominal (based on the limiting dens).

Something even better in this regard is based on a different use of limiting dens for "MLE's" -

Theorem 3 (of ML handout)

Under appropriate conditions in an iid model, if $\{\mathcal{S}_n(X)\}$ is consistent for Θ at Θ_0, and with Θ_0 a root of the likelihood equation

$$L_n(\Theta) = 0$$

Then

$$2 \left(l_n(\hat{\Theta}_n) - l_n(\Theta_0) \right) \xrightarrow{\text{d}} \chi^2_1$$
Note that the expression

\[2 \left(\frac{\ln(\delta_n(x)) - \ln(\theta_0)}{\Delta} \right) \]

is "sort of"

\[2 \log \left(\frac{\sup_\theta \ln(\theta)}{\ln(\theta_0)} \right) \]

\(\text{likelihood ratio statistic for testing } H_0: \theta = \theta_0 \)
\(\text{vs } H_1: \theta \neq \theta_0 \)

So Theorem 9 gives me a way to set critical values for LRTs of point null hypotheses for large \(n \) - For more importantly, it also gives me a way to make confidence sets for \(\theta \) by inverting tests - This amounts to doing the following - If \(c \) is the upper \(\alpha \) pt of \(\chi^2 \)

\[P_{\theta_0} \left[2 \left(\ln(\delta_n(x)) - \ln(\theta_0) \right) < c \right] \approx 1 - \alpha \]

\[P_{\theta_0} \left[\ln(\delta_n(x)) - \frac{1}{2} c < \ln(\theta_0) \right] \]

That is, the set of \(\theta \)'s with \(\ln(\theta) \) no more than \(\frac{1}{2} c \) below the maximum of the log likelihood functions as a confidence set for \(\theta \). That is
with data $X = x$

$$\{ \theta | l_n(\theta) > h_n(\delta_n(x)) - \frac{1}{2}c^2 \}$$

can be used as a confidence set for θ

Thus is an important multi-parameter extension of this, but before doing that I want to give you some idea of how this comes about.

Argument for Thm 3 of the handout:

Again write $\hat{\theta}_n$ instead of $\delta_n(x)$ (recall BTW that the argument for asymptotic normality for $\hat{\theta}_n$ is done by expanding $l_n(\cdot)$ in a Taylor series around θ_0) - thus expand $l_n(\cdot)$ around $\hat{\theta}_n$

$$l_n(\theta_0) = l_n(\hat{\theta}_n) + (\theta_0 - \hat{\theta}_n) l'_n(\hat{\theta}_n) + \frac{1}{2} (\theta_0 - \hat{\theta}_n)^2 l''_n(\hat{\theta}_n)$$

$$\quad + \frac{1}{6} (\theta_0 - \hat{\theta}_n)^3 l'''_n(\theta')$$

for some θ' between $\hat{\theta}_n$ and θ_0 - so

$$2(l_n(\hat{\theta}_n) - l_n(\theta_0)) = \underbrace{- (\theta_0 - \hat{\theta}_n) l'_n(\hat{\theta}_n)}_{A_n^*}$$

$$- \underbrace{2(\frac{1}{2})(\theta_0 - \hat{\theta}_n)^2 l''_n(\hat{\theta}_n)}_{B_n^*}$$

$$- \underbrace{\frac{1}{3} (\theta_0 - \hat{\theta}_n)^3 l'''(\theta')}_{C_n^*}$$
\(\hat{\Theta}_n \) an "MLE" makes \(L_n(\hat{\Theta}_n) = 0 \), makes \(A^*_n = 0 \)

\[
B^*_n = (\Theta_0 - \hat{\Theta}_n)^2 (-L''(\hat{\Theta}_n)) \\
= (\sqrt{n}(\Theta_0 - \hat{\Theta}_n))^{-2} (\frac{-1}{n} L''(\hat{\Theta}_n)) \\
\xrightarrow{\mathbb{P}} \mathcal{N}(0, I^{-1}_1(\Theta_0)) \quad \text{not too surprising if this converges to } I_1(\Theta_0)
\]

So \(B^*_n \xrightarrow{\mathbb{P}} \left(\sqrt{I_1(\Theta_0)} \cdot \mathcal{N}(0, I^{-1}_1(\Theta_0)) \right)^2 \)

(since the square of a standard normal is \(\chi^2_1 \))

And sure enough, standard regularity conditions are set up (just as for the proof of asymptotic normality of "MLEs") to produce

\[C^*_n \xrightarrow{\mathbb{P}} 0 \]

There is an important multivariate version of this \(\chi^2 \) limit for a LRT statistic - That goes as follows -

\[
\Theta = \begin{pmatrix} \Theta_1 \\ (k-1) \times 1 \end{pmatrix} \\
\hat{\Theta}_n \text{ an "MLE" similarly partitioned}
\]

Suppose that for each \(\Theta_1 \in \mathbb{R}^d \)

\(\Theta^*_n(\Theta_1) \in \mathbb{R}^{k-1} \) is a "maximizer" of \(L_n(\Theta_1, \cdot) \)

over choices of \(\Theta_2 \)
Then
\[l^*_n(\theta_1) = \max_{\theta_2} L_n(\theta_1, \theta_2, \theta_2^*) \]
\[= \max_{\theta_2} L_n(\theta_1, \theta_2) \]
is called the "profile likelihood" for \(\theta_1 \), and can essentially be used like a likelihood to do inference for \(\theta_1 \). There is, e.g. The large sample result

\[\text{``The'' under appropriate regularity conditions in an iid model, if } \Theta \subset \mathbb{R}^k \]
\[Z \left(l_n(\hat{\theta}_n) - l^*_n(\theta_{10}) \right) \xrightarrow{\text{d}} \chi^2 \]
\[\text{max of } l_n(\theta) \]
\[\text{is also the max of } l^*_n(\theta_1) \]
\[\text{any } \theta \text{ with } \theta_1 = \theta_0 \]

I can then use this to set critical values for LRT's
\[\text{at } H_0: \theta_1 = \theta_{10} \text{ and if } c^* \text{ is the upper } \alpha \text{ pt of } \chi^2 \]
\[\begin{align*}
P_{\theta_0} \left[s(\hat{\theta}_n) - l^*_n(\theta_{10}) < c^* \right] & \approx 1 - \alpha \\
\text{Notes:} \quad & \\
\text{P}_{\theta_0} \left[l_n(\hat{\theta}_n) - \frac{1}{2} c^* < l^*_n(\theta_{10}) \right] & \\
\text{So that with data } X = x \text{ and MLE } \hat{\theta}_n(\bar{x}), \text{ }
\{ \theta_1 \mid l_n^*(\theta_1) > l_n(\hat{\theta}_n(\bar{x})) - \frac{1}{2} c^* \}
\text{can be used as an approximate } (1-\alpha)x100\% \text{ confidence set for } \theta_1