1. This sample has range 1 in coded units. (the coded sample is \{1, 2, 2, 1, 2, 1, 2, 1\}) So we'll use Tables 1.3 and 1.6 of the notes.

\(n_1 = 3, n_{21} = 5, \; m = 5. \) For \(n = 8 \) and \(\sigma = 5 \)

Table 1.3 shows that \(\Delta_1 = .527 \) and \(\Delta_2 = .251 \).

Then \(\Delta_1 = .281 \) and \(\Delta_2 = .527 \)

and in coded units the interval is

\[(1.5 - .281, 1.5 + .527)\]

\[(1.219, 2.027)\]

In original units this is

\[(1.001219, 1.002027)\] inches

2. \(P[|\bar{X} - \mu| > 2.88 \sigma_{\bar{X}}] = P[|\bar{X}| > 2.88] = 2 (1 - .9580) = .004 \)

So the Showhart all-ok ARL is \(\frac{1}{.004} = 250 \)
13. (a) \[k_1 = \frac{1}{2} (10 + 10.5208) = 10.2604 \]
\[k_2 = \frac{1}{2} (10 + 9.7392) = 9.7396 \]

So \[g = \frac{10.2604 - 10}{(5)/2.88} = 1.5 \]
and consulting Table 4.6, we see we want \[g = 1.47 \] and then
\[h = 1.47 \left(\frac{5}{2.88} \right) = 2.552 \]
with \(U_0 = L_0 = 0 \)

13. (b) If the current process mean is 10.5208 (and
\(\sigma = 0.5/2.88 \))

\[
P[\text{\textit{X} plots outside Shewhart limits}] = P[Z > \frac{10.5 - 10.1302}{0.5/2.88}] + P[Z < \frac{9.5 - 10.1302}{0.5/2.88}] = P[Z > 2.13] + P[Z < -3.63] \approx 0.0166
\]

So Shewhart ARL is about \(\frac{1}{0.0166} \approx 60 \)

For the CUSUM, (using 4.15), (4.19) and (4.18)

\[k^* = \frac{A}{\sigma} = 1.47 \left(\frac{5}{2.88} \right) = 1.47 \]

\[c^* = \frac{10.2604 - 9.7396}{2 \left(\frac{5}{2.88} \right)} = 1.5 \]

\[\bar{c}^* = \frac{10.1302 - 10}{5/2.88} = 0.75 \]

ARL is around (less than) 42. From Table 4.5
b) i) \[UCL_x = p + 3\sqrt{2p} = 2 + 3\sqrt{4} = 8 \]

Roughly, we expect \(\bar{e} = 0 \) and

\[\text{Var } e = \left(\sigma_e \right)^2 = \text{from SLR model} \]

(This ignores the fact that \(b_i \)'s aren't \(\beta_i \)'s). The MSE from SLR, estimates \(\sigma_e^2 \). So sensible 3-sigma limits for \(e_i \)'s are

\[UCL_e = 0 + 3\sqrt{\text{MSE}} = 3\sqrt{106.6}
\]

\[LCL_e = -3\sqrt{\text{MSE}} = -3 \]

ii) I'd probably monitor \(e_i \). \(e_i \)'s will be large (in magnitude), only if the relationship between \(x \) and \(y \) changes. \(\chi^2 \) could also be large by virtue of \(e_i \)s also producing a change in the plan of \(x_i \)'s).

4. a) Using the basic measurement model, the "right" measurement is repeatability and

\[\sigma_y^2 = \sigma_x^2 + \sigma_{\text{measurement}}^2 \]

so

\[\sigma_x = \sqrt{\sigma_y^2 - \sigma_{\text{measurement}}^2} = \text{part-to-part standard deviation} \]

Further, an obvious estimate is

\[\hat{\sigma}_x = \sqrt{\left(\frac{\bar{R}}{d_2(s)} \right)^2 - \left(\hat{\sigma}_{\text{repeatability}} \right)^2} \]

\[= \sqrt{\left(\frac{.010}{2.326} \right)^2 - (.002)^2} = .0038 \text{ inch} \]
b) \(\hat{\sigma}_y = \frac{\bar{R}}{2.326} \) and \(\hat{\sigma}_{\text{Repeatability}} \) are plausibly modeled as independent. So the delta method gives

\[
\text{Var} \left(\frac{\bar{R}}{J} \right) = \left(\frac{\hat{\sigma}_y}{J \sigma_y} \right)^2 \text{Var} \left(\frac{\bar{R}}{J} \right) + \left(\frac{\hat{\sigma}_{\text{Repeatability}}}{J \sigma_y} \right)^2 \text{Var} \left(\frac{\bar{R}}{J} \right)
\]

\[
= \left(\frac{\hat{\sigma}_y}{J \sigma_y} \right)^2 \left(\frac{1}{2.326} \right)^2 \left(\frac{1}{40} \right) \left(\frac{1.693}{30} \right) \text{Var} \left(\frac{\bar{R}}{J} \right)
\]

From one sample

\[
= \left[\frac{\hat{\sigma}_y^4}{J \sigma_y^2} \left(\frac{.864}{2.326} \right)^2 \frac{1}{40} + \hat{\sigma}_{\text{Repeatability}}^4 \left(\frac{1.693}{30} \right) \right]
\]

So

\[
\sqrt{\text{Var} \left(\frac{\bar{R}}{J} \right)} = \frac{1}{J \sigma_y} \sqrt{\hat{\sigma}_y^4 \left(\frac{.864}{2.326} \right)^2 \frac{1}{40} + \hat{\sigma}_{\text{Repeatability}}^4 \left(\frac{1.693}{30} \right) ^2 \frac{1}{30} }
\]

To produce a standard error, replace the \(\hat{\sigma} \)'s with estimates, namely

\(\hat{\sigma}_y = .0038 \)

\(\hat{\sigma}_{\text{Repeatability}} = .002 \)

and

\(\hat{\sigma}_y = \frac{.010}{2.326} = .0043 \)

Arithmetic then gives a standard error of .0003 inch.
5. As suggested, consider half-hour periods and the MC with transition diagram below:

Then the mean number of steps to absorption from S_1 (or S_4) is the mean number of half hours required to produce an alarm. That is, with

$$P = \begin{pmatrix}
S_1 & S_2 & S_3 & S_4 & S_5 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & q_2 & 1-q_2 & q_{12} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}$$

Then with the usual $L = (I - R)^{-1} 1$, the mean clock time to alarm is

$$\frac{1}{2} L_1 = \frac{1}{2} L_4 \left(\frac{2 + q_2 q_{12}}{2(q_1 + q_2 q_{12})} \right)$$