Stat 511 Exam1

February 24, 2009
Prof. Vardeman

I have neither given nor received unauthorized assistance on this exam.

KEY

Name

Name Printed
1. Consider a segmented simple linear regression problem in one variable, \(x \). In particular, suppose that \(n = 6 \) values of a response \(y \) are related to values \(x = 0, 1, 2, 3, 4, 5 \) by a Gauss-Markov normal linear model \(Y = X\beta + \varepsilon \) for

\[
Y = \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
\end{pmatrix}, \quad X = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0 \\
1 & 3 & 1 \\
1 & 4 & 2 \\
1 & 5 & 3 \\
\end{pmatrix}, \quad \beta = \begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\end{pmatrix}, \quad \text{and } \varepsilon = \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5 \\
\varepsilon_6 \\
\end{pmatrix}
\]

Values of \(x \) are in the second column of the model matrix. This model allows the linear form \(y \approx \beta_0 + \beta_1 x \) for \(x \leq 2 \) and the linear form \(y \approx \beta_0 + 2\beta_1 + (\beta_1 + \beta_2)(x - 2) \) for \(x \geq 2 \). Notice that there is continuity of these forms at \(x = 2 \).

10 pts a) This a full rank model. Argue carefully that this is the case.

Rank is the number of linearly independent columns or rows of X. Consider the 1st, 2nd and 4th rows of the X matrix. Placing these into a 3x3 matrix, one has

\[
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 3 & 1 \\
\end{pmatrix}
\]

and this matrix has determinant 1 \(\neq 0 \). That is, it is non-singular i.e. has rank = 3. So X has maximum rank.

**Here \(X'X \)^{-1} = \begin{pmatrix}
.825 & -1.474 & .526 \\
-1.474 & .421 & -.579 \\
.526 & -.579 & .921
\end{pmatrix} \text{ and for } Y' = (0, 2, 4, 3, 1, 0), \quad (X'X)^{-1} X Y = \begin{pmatrix}
-.018 \\
2.053 \\
-3.447
\end{pmatrix} \text{ and } \quad SSE = .202.**

10 pts b) Is there definitive evidence that a simpler model \(y \approx \beta_0 + \beta_1 x \ \forall x \) is inadequate here? Explain.

Consider testing \(H_0: \beta_2 = 0 \) in the full model. A t-statistic for doing this is

\[
T = \frac{b_2 - 0}{\sqrt{MSE \sqrt{d_3}}} = \frac{-3.447 - 0}{\frac{.202}{6-3} \sqrt{.921}} = -13.8
\]

This is a huge value of a \(t \)-r.v. and there is thus definitive evidence that \(\beta_2 \neq 0 \) i.e. The simple linear regression model is inadequate here.
c) Tomorrow a total of 3 new observations are to be drawn from this model at, respectively,
\(x = 1, 2, \) and 3. Call these \(y_1^*, y_2^*, \) and \(y_3^* \). The quantity \((y_3^* - y_2^* - (y_2^* - y_1^*) = y_3^* - 2y_2^* + y_1^* \) is an
empirical measure of change in slope of mean \(y \) as a function of \(x \) at \(x = 2 \) based on these new
observations. **Provide 95% two-sided prediction limits** for this quantity. (Plug in completely, but
you need not do arithmetic.)

Note that the mean of \(y_3^* - 2y_2^* + y_1^* \) is \(\beta_0 + 3\beta_1 + 3\beta_2 \)
\[-2(\beta_0 + 2\beta_1 + 0\beta_2) + \beta_0 + \beta_1 + 0\beta_2 = \beta_2 \]
So, since
\[\text{Var}(y_3^* - 2y_2^* + y_1^*) = 2\sigma^2 + 4\sigma^2 + \sigma^2 = 6\sigma^2 \]
we may use limits
\[\hat{b}_{2}\text{OLS} \pm t\sqrt{MSE} \sqrt{6 + d_3} \]
\[-3.447 \pm 3.182\sqrt{\frac{202}{3}} \sqrt{6 + 5.921} \]
\[2.17 \]

\[d_3 \]

\[\text{df} = 6 - 3 = 3 \]

d) **Find the value and degrees of freedom** for a \(t \) statistic for testing \(H_0 : \mu_{y|y=1} = \mu_{y|y=3} \) (the
hypothesis that the mean responses are the same for \(x = 1 \) and \(x = 3 \)).

\[M_{y|y=1} - M_{y|y=3} = \beta_0 + \beta_1 - (\beta_0 + 5\beta_1 + 3\beta_2) = -4\beta_1 - 3\beta_2 \]
So \[\hat{\beta}_{OLS} = -4(2.053) - 3(-3.447) = 2.129 \] This
has standard error \[\sqrt{MSE} \sqrt{(-4\sigma^2 - 3\sigma^2)} \]
\[\frac{1}{\sqrt{202}} \sqrt{1.129} = .2757 \]
So \[\frac{\hat{\beta}_{OLS}}{\text{std.err.}} = \frac{2.129}{.2757} = 7.72 \]

\[T = 7.72 \]

\[df = 6 - 3 = 3 \]
e) **Write out** (plug in completely so that your implied answer is numerical, but you need not do the arithmetic) a **test statistic** that you could use to test the hypothesis that \(H_0 : \mu_{y|x=1} = \mu_{y|x=5} = 1 \). Say exactly what null distribution you would use.

We may use an \(F \) test of the testable hypothesis

\[
H_0 : \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}
\]

This is based on

\[
F = \left(\frac{.202}{3} \right)
\]

\[
= \left(\frac{-0.018+5(2.053)+3(-5.997)-1}{153} \right) \left(\begin{pmatrix} .825 & .474 & .526 \\ -9.74 & .921 & -.579 \\ .526 & -.579 & .921 \end{pmatrix} \right)^{\frac{1}{2}} \left(\begin{pmatrix} 1 \\ 153 \\ 1 \end{pmatrix} \right)
\]

The reference df will be \(F_{2,3} \).

f) It is possible to compute \(X(X'X)^{-1}X' \) both for the full model specified at the beginning of this problem and for a model with \(X \) matrix consisting of only the first two columns of the original one. The diagonal entries of these two matrices are in the table below.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>diagonal entry of (X(X'X)^{-1}X') for the original (X)</td>
<td>.825</td>
<td>.298</td>
<td>.614</td>
<td>.272</td>
<td>.298</td>
<td>.693</td>
</tr>
<tr>
<td>diagonal entry of (X(X'X)^{-1}X') for the reduced (X)</td>
<td>.524</td>
<td>.295</td>
<td>.181</td>
<td>.181</td>
<td>.295</td>
<td>.524</td>
</tr>
</tbody>
</table>

Compare the two patterns above and **say** why (in the context provided at the beginning of this problem) they "make sense."

The **reduced model pattern** is high on the "ends" and low in the middle. The **full model pattern** is high on the ends, but also has a high value at \(x = 2 \) in the "middle," exactly where the \(2 \) linear forms are assumed to "join up"/be continuous. These are measures of "influence" of the data points on the fitting. In the **reduced case** it is plausible that the "end" data points are most influential in determining fit. In the **full model case** it is also quite plausible that the interior point where linear forms must agree (and which functions as an "end point" for both segments) will also be important.
2. Suppose that \(Y \) is \(\text{MVN}_n\left(\mu, \sigma^2 I\right) \) and that \(A, B, \) and \(C \) are symmetric \(n \times n \) matrices with \(AB = 0, AC = 0, \) and \(BC = 0. \) Argue carefully that the three random variables \(Y'AY, Y'BY, \) and \(Y'CY \) are jointly independent. Consider \(\begin{pmatrix} A & B \\ B & C \end{pmatrix} \) \(Y \). This is \(\text{MVN}_{3n} \) with covariance matrix

\[
\begin{pmatrix} A \\ B \\ C \end{pmatrix} \begin{pmatrix} A & B & C \\ B & B & B \\ C & C & C \end{pmatrix} = \sigma^2 \begin{pmatrix} A & B & C \\ B & B & B \\ C & C & C \end{pmatrix} = \sigma^2 \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}
\]

and since for MVN variables \(0 \) covariance implies independence and since for MVN variables \(0 \) covariance implies independence (and so are functions of these). But \(Y'AY = Y'A A^{-1} AY = (AY)'A^{-1}AY \) is a function of \(AY. \) Similarly, \(Y'BY \) is a function of \(BY \) and \(Y'CY \) is a function of \(CY. \)

3. Suppose that \(y_{11} \) and \(y_{12} \) are independent \(N(\mu, \eta) \) variables independent of \(y_{21} \) and \(y_{22} \) that are independent \(N(\mu, 4\eta) \) variables. (The \(\eta \) and \(4\eta \) are variances.) What is the BLUE of \(\mu_1 - \mu_2? \) Explain carefully.

\[
\begin{pmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} + \epsilon \quad \text{where } \epsilon \sim \text{MVN}_4(0, \eta \text{diag}(1,1,4,4))
\]

Let \(V^{-\frac{1}{2}} = \text{diag}(1,1,\frac{1}{2},\frac{1}{2}) \) and \(U = V^{-\frac{1}{2}} Y = \begin{pmatrix} y_{11} \\ y_{12} \\ \frac{1}{2} y_{21} \\ \frac{1}{2} y_{22} \end{pmatrix} \) follows a Gauss-Markov linear model with model matrix \(W = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \).

Here, OLS is BLUE, so the BLUE of \(\mu_1 - \mu_2 = (1-1) \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \) is

\[
(1-1) (W'W)^{-1} W'U = (1-1) \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{pmatrix} = (1-1) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} y_{11} + y_{12} \\ \frac{1}{4} y_{21} + \frac{1}{4} y_{22} \end{pmatrix}
\]

\[
= \frac{1}{2} (y_{11} + y_{12}) - \frac{1}{2} (y_{21} + y_{22})
\]

Notice that this is true no matter what \(y \).
4. a) For any non-zero $w \in \mathbb{R}^n$ the set of multiples of w, namely $\{cw | c \in \mathbb{R}\}$, is a 1-dimensional subspace of \mathbb{R}^n. We might call this subspace $C(w)$. Consider the operation of perpendicular projection onto $C(w)$, accomplished using the $n \times n$ projection matrix P_w. Argue carefully that for any $v \in \mathbb{R}^n$,

$$P_w v = \left(\frac{v'w}{w'w} \right) w$$

(Note that $P_w v = cw$ for some $c \in \mathbb{R}$, and consider $cw'w$.)

$$C\left(\frac{w'w}{w'w} \right) = \left(P_w v \right)'w = \frac{v'w}{w'w} \cdot w = \frac{v'w}{w'w}$$

so, taking the 1st and last of these, we have

$$\frac{v'w}{w'w} = v'w \quad \text{and} \quad c = \frac{v'w}{w'w} \quad \text{i.e.} \quad P_w v = \left(\frac{v'w}{w'w} \right) v$$

b) In the regression context from lecture, let $X = (1 | x_1 | x_2 | \cdots | x_{r-1} | x_r)$ and $X_{r-1} = (1 | x_1 | x_2 | \cdots | x_{r-1})$. Further, let

$$z_r = x_r - P_{X_{r-1}} x_r = (I - P_{X_{r-1}}) x_r$$

Argue carefully that for any $v \in C(X_{r-1})$, $v \perp z_r$.

For $v \in C(X_{r-1})$

$$v' z_r = v' (z_r - P_{X_{r-1}} z_r) = v' z_r - v' P_{X_{r-1}} z_r$$

$$= v' z_r - \left(\frac{v' z_r}{z_r' z_r} \right) z_r$$

$$= v' z_r - \left(\frac{v' z_r}{z_r' z_r} \right) z_r$$

$$= 0$$
c) As a matter of fact, \(P_X - P_{X_{r-1}} = P_z \). Argue carefully here that \(P_X - P_{X_{r-1}} \) is symmetric and idempotent, and that \((P_X - P_{X_{r-1}})v = v \) for any \(v \in C(z_r) \).

\[
(P_X - P_{X_{r-1}})(P_X - P_{X_{r-1}}) = P_X P_X - P_X P_{X_{r-1}} - P_{X_{r-1}} P_X + P_{X_{r-1}} P_{X_{r-1}}
\]

\[
= P_X - P_{X_{r-1}} - P_{X_{r-1}} + P_{X_{r-1}}
\]

\[
= P_X - P_{X_{r-1}}
\]

\[
(P_X - P_{X_{r-1}})c z_r = c (P_X - P_{X_{r-1}})z_r = c (P_X - P_{X_{r-1}})(z_r - P_{X_{r-1}} z_r)
\]

\[
= c (P_X z_r - P_{X_{r-1}} z_r - P_{X_{r-1}} z_r + P_{X_{r-1}} P_{X_{r-1}} z_r)
\]

\[
= c (z_r - P_{X_{r-1}} z_r - P_{X_{r-1}} z_r + P_{X_{r-1}} z_r)
\]

\[
= c (z_r - P_{X_{r-1}} z_r) = c z_r
\]

5pts
d) Using the facts in a)-c) argue carefully that

\[
\hat{Y} = P_{X_{r-1}}Y + \left(\frac{e_{r-1}'}{z_r' z_r} \right) z_r
\]

for \(e_{r-1} = (I - P_{X_{r-1}})Y \). Then say why it is clear that the multiplier of \(z_r \) here is \(b_r^{OLS} \), the ordinary least squares estimate of the regression coefficient \(\beta_r \) in the full original regression. What interpretation does this development provide for \(b_r^{OLS} \)?

\[
\hat{Y} = P_X Y = (P_{X_{r-1}} + (I - P_{X_{r-1}}))Y = P_{X_{r-1}} Y + P_{I-r} Y
\]

But since \(z_r \perp C(X_{r-1}) \), \(P_{z_r} Y = P_{z_r} Y + P_{z_r} P_{X_{r-1}} Y \)

\[
= P_{z_r} (Y - P_{X_{r-1}} Y)
\]

\[
= P_{z_r} (I - P_{X_{r-1}}) Y
\]

\[
= P_{z_r} e_{r-1}
\]

Now then, since \(P_{X_{r-1}} Y \) is a linear combination of only the first \(r-1 \) columns of \(X \), the coefficient of \(z_r = \frac{e_{r-1}'}{z_r' z_r} \) is the multiplier of \(z_r \) in making up \(\hat{Y} \) as a l.c. of the columns of \(X \), i.e. is \(b_r^{OLS} \). This regression coefficient is in the part of \(Y \) not in \(C(X_{r-1}) \) regressed on the part of \(z_r \) also not in \(C(X_{r-1}) \) ... it measures what remaining part of \(Y \) is "explained" by the part of \(z_r \) not already accounted for by \(X_{r-1} \).