The Gauss-Markov Theorem

In the linear model \(Y = X\beta + \varepsilon \) with \(E\varepsilon = 0 \) and \(\text{Var}\varepsilon = \sigma^2 I \), if \(c' \in C(X') \), then \(\hat{c}'_{\text{OLS}} \) is the (uniformly over all \(EY \in C(X) \) and \(\sigma^2 \)) Best Linear Unbiased Estimator of \(c'\beta \).

(\(\hat{c}'_{\text{OLS}} \) is the \(v'Y \) that among all such linear combinations of the entries of \(Y \) with mean \(c'\beta \) has the smallest variance.)

Proof. Write \(c'(XX)'X = \rho' \) so that

\[\hat{c}'_{\text{OLS}} = \rho'Y \]

First note that \(\rho = P_X\rho \). Why? \(\rho = X(X'X)^{-1}X'c \) so that \(\rho \in C(X) \) and \(P_X \) is the projection matrix onto \(C(X) \).

Suppose \(v \) is such that \(Ev'Y = c'\beta \ \forall \beta \). This is

\[v'X\beta = c'\beta \ \forall \beta \]

which implies that

\[v'X = c' \]

Consider the variance of \(v'Y \).

\[
\text{Var}(v'Y) = \text{Var}(v'Y - \rho'Y + \rho'Y) = \text{Var}((v' - \rho')Y + \rho'Y) = \text{Var}((v' - \rho')Y) + \text{Var}(\rho'Y) + 2\text{Cov}((v' - \rho')Y, \rho'Y)
\]

Now \(\text{Var}((v' - \rho')Y) \geq 0 \) and thus if we can show that the covariance term above is 0, we will be done. But

\[
\text{Cov}((v' - \rho')Y, \rho'Y) = (v' - \rho')(\text{Var}Y)\rho = \sigma^2 (v' - \rho')\rho = \sigma^2 (v'P_X - \rho'P_X)\rho = \sigma^2 (v'X(X'X)^{-1}X' - \rho')\rho = \sigma^2 (c'(X'X)^{-1}X' - \rho')\rho = \sigma^2 (\rho' - \rho')\rho = 0
\]