1. In the calibration of a scientific instrument, "true" values \(x \) are known and produce experimental readings \(y \) on the instrument. Suppose that we are willing to assume that the mean value of \(y \) is proportional to \(x \), so that

\[
y = x \beta + \varepsilon,
\]

where for \(\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)' \) and \(\text{E} \varepsilon = 0 \). A particular calibration experiment produces \(n = 4 \) data points as per the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Initially suppose that \(\text{Var} \varepsilon = \sigma^2 I \).

\[
Y = \begin{pmatrix} 3 \\ 6 \\ 11 \\ 14 \end{pmatrix}, \quad X = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}
\]

a) Find a matrix \(P_X \) so that \(\hat{Y} = P_X Y \).

\[
P_X = X (X'X)^{-1} X'
\]

where

\[
(X'X)^{-1} = \frac{1}{36 + 25 + 36} \begin{pmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 6 \end{pmatrix}
\]

\[
= \frac{1}{86} \begin{pmatrix} 9 & 12 & 15 & 18 \\ 12 & 16 & 20 & 24 \\ 15 & 20 & 25 & 30 \\ 18 & 24 & 30 & 36 \end{pmatrix}
\]

b) By the criterion of "size of the hats, \(h_a \)" which of the 4 observations is "most influential" in the fitting of the linear model here?

The \(h_a \) are the diagonal elements of \(P_X \), the largest of which is the last, which corresponds to the 4th observation \((x_4, y_4) = (16, 14)\).

c) Give 90% two-sided confidence limits for \(\sigma \) in the normal version of this model. (No need to simplify.)

\[
\hat{Y} = X (X'X)^{-1} X' Y
\]

\[
= \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} \frac{1}{86} \begin{pmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}
\]

\[
= \frac{3 + 24 + 55 + 84}{86} \frac{1}{86} \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}
\]

So \(\text{SSE} = (3-6)^2 + (6-6)^2 + (11-10)^2 + (14-12)^2 = 18 \) and \(\text{MSE} = \frac{18}{3} \)

So 90% limits are \(\left(\frac{18}{7.815}, \sqrt{\frac{18}{.352}} \right) \)

upper 5% pt of \(\chi^2_3 \)

lower 5% pt of \(\chi^2_3 \)

So \(\text{SSE} = (3-6)^2 + (6-6)^2 + (11-10)^2 + (14-12)^2 = 18 \) and \(\text{MSE} = \frac{18}{3} \)

So 90% limits are \(\left(\frac{18}{7.815}, \sqrt{\frac{18}{.352}} \right) \)

upper 5% pt of \(\chi^2_3 \)

lower 5% pt of \(\chi^2_3 \)

So \(\text{SSE} = (3-6)^2 + (6-6)^2 + (11-10)^2 + (14-12)^2 = 18 \) and \(\text{MSE} = \frac{18}{3} \)

So 90% limits are \(\left(\frac{18}{7.815}, \sqrt{\frac{18}{.352}} \right) \)

upper 5% pt of \(\chi^2_3 \)

lower 5% pt of \(\chi^2_3 \)
d) Give 90% two-sided prediction limits for a new y for $x = 10$. (No need to simplify.)

This is prediction of y^* with $E y^* = 10 \beta$ and $\text{Var} y^* = 10^2 - S_e^2$

limits are

$$10 \text{bols} \pm t \sqrt{\text{MSE}} \sqrt{1 + 10 \left(\frac{s_e}{10}\right)^2}$$

$$10/2 \pm 2.353 \sqrt{6} \sqrt{1 + \frac{100}{86}}$$

Now suppose that it is plausible that not only is the mean value of y is proportional to x, but that so too is the standard deviation of y. That is, suppose that $\text{Var} \epsilon = \sigma^2 \text{diag}(9, 16, 25, 36)$.

e) Give a matrix T such that TY follows a Gauss-Markov model. What is the model matrix for TY?

$$T: \quad \text{Model Matrix: } \quad W = TX$$

$$T = (\text{diag}(9, 16, 25, 36))^{-1}$$

$$= \text{diag}(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6})$$

$$= \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$

f) Evaluate an appropriate point estimate of β under these model assumptions.

$$\hat{\beta} = (W'W)^{-1}W'U = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \text{diag}(\frac{3}{3}, \frac{4}{4}, \frac{5}{5}, \frac{6}{6}) \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$

$$U = TY$$

$$= \frac{1}{4} \left(\frac{3}{3} + \frac{4}{4} + \frac{5}{5} + \frac{6}{6} \right)$$

$$= \frac{422}{240}$$

g) Give a standard error (an estimated standard deviation) for your estimate of β in part f) under these heteroscedastic model assumptions.

$$\text{Var } b_{\text{ols}}(u) = \frac{\sigma^2}{4} \quad \text{So } \quad \overline{\text{Var } b_{\text{ols}}(u)} = \frac{1}{2} \sqrt{\text{MSE}_U}$$

$$\text{MSE}_U = \frac{1}{3} \left(\left(\frac{3}{3} - \frac{422}{240} \right)^2 + \left(\frac{4}{4} - \frac{422}{240} \right)^2 + \left(\frac{5}{5} - \frac{422}{240} \right)^2 + \left(\frac{6}{6} - \frac{422}{240} \right)^2 \right)$$

$$= 0.3892$$

So $$\overline{\text{Var } b_{\text{ols}}(u)} = \frac{1}{2} \sqrt{0.3892} = 0.3119$$
2. So-called "mixture experiments" are run to investigate how the composition of a substance (as measured by fractions of it that are of "pure component" types \(i = 1, 2, \ldots, r \)) affect some physical property \(y \). For example, \(y \) might be an octane rating for a gasoline blended from \(r \) "pure" components like butane, alkylate, cat cracked, etc. Notice that in a mixture study
\[
x_1 + x_2 + \cdots + x_r = 1
\]
In this problem, we consider an \(r = 4 \) component mixture problem. Consider the linear model
\[
Y = X\beta + \varepsilon
\]
for
\[
X = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & .5 & .5 & 0 & 0 \\
1 & .5 & 0 & .5 & 0 \\
1 & .5 & 0 & 0 & .5 \\
1 & .5 & 0 & .5 & 0 \\
1 & .33 & .33 & 0 & .33 \\
1 & .33 & .33 & 0 & .33 \\
1 & .33 & 0 & .33 & .33 \\
1 & 0 & .33 & .33 & .33 \\
1 & .25 & .25 & .25 & .25 \\
\end{pmatrix}
\]

Exercise

a) For an arbitrary composition vector \((x_1, x_2, x_3, x_4)\) (with each \(x_i \geq 0 \) and \(\sum x_i = 1 \)) argue carefully that the corresponding mean response \(\beta_0 + \sum \beta_i x_i \) is estimable.

Note that with \(y_i \) the \(i \)th row of \(X \) and \((x_1, x_2, x_3, x_4)\) a mixture vector
\[
\beta_0 + \sum \beta_i x_i = (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4) \beta
\]
i.e. This is \(e'\beta \) for \(e \) a linear combination of (the first 4) rows of \(X \).

b) The parameter \(\beta_0 \) is not estimable in this model. Argue this point carefully.

\(\text{Rank}(X) \) is both the row rank and the column rank. (So \(\text{rank}(X) \) is at most 5.) The fact that the last column is the sum of the last 4 means that \(X \) is not of full rank. Now looking at the first 4 rows of \(X \) we see that all of \(\beta_0, \beta_1, \beta_0 + \beta_2, \beta_0 + \beta_3 \) and \(\beta_0 + \beta_4 \) are estimable. If \(\beta_0 \) were estimable, then all of \(\beta_0, \beta_1 = (\beta_0 + \beta_1) - \beta_0, \beta_2, \beta_3, \beta_4 \) would be estimable and \(X \) would be of full rank.
Now consider a full rank restricted version of the original mixture model of the form

\[Y = X'\gamma = (x_1 | x_2 | x_3 | x_4)\gamma + \varepsilon \text{ for } \gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{pmatrix} \]

\[x_1: \text{This is the mean response for a pure component of Type 1.} \]

\[x_2-x_1: \text{This is the difference in mean responses for Type 1 and Type 2 pure components.} \]

\[\text{Note the fact that } \Sigma x_i = 1 \text{ makes the usual regression interpretation of the rate of change of mean, } \frac{\partial \mu}{\partial x}, \text{ holding the other } x_i \text{'s fixed, impossible.} \]

\[d) \text{ Give a matrix } C \text{ and a vector } d \text{ so that the hypothesis that “pure component #1 has mean response } 3 \text{ and simultaneously an “equal parts mixture of components” has mean response } 12 \text{” in the form } H_0 : C\gamma = d. \]

\[C : \begin{pmatrix} 1 & 0 & 0 & 0 \\ .25 & .25 & .25 & .25 \end{pmatrix} \quad d : \begin{pmatrix} 3 \\ 12 \end{pmatrix} \]

\[e) \text{ Is the hypothesis in d) testable? Explain.} \]

Yes it is. Both rows of } C } \text{ are rows of } X^* \text{ so both } \gamma_1 \text{ and } \gamma = \frac{1}{4}(\beta_1 + \beta_2 + \beta_3 + \beta_4) \text{ are estimable. The 2nd row of } C \text{ is not a multiple of the 1st, so Rank}(C) > 1 \text{ i.e. } C \text{ is of full rank } 2. \]

There is some R output attached to this exam. The first part of it concerns this mixture problem. Use it to help you answer the following questions.

\[f) \text{ For which of the } (x_1, x_2, x_3, x_4) \text{ mixtures in the data set is the mean of } y \text{ most precisely estimated? Say why your answer agrees with intuition.} \]

From the printout, the smallest diagonal entry of } H \text{ is the last one. Since } \text{Var}(\hat{\gamma}) = \sigma^2 H, \text{ it is then the last } (x_1, x_2, x_3, x_4), \text{ namely } (.25, .25, .25, .25) \text{ that has the most precisely estimated mean response. This is a set of conditions at the “center” of the experimental region, where one should expect to be best informed.
g) Give 90% two sided confidence limits for $\gamma_1 - \gamma_2$. (Plug in, but you need not simplify.)

We want

$$a_{1.05} \frac{Q}{b_{10}} \pm t_{1.05} \sqrt{\frac{16.48}{11}} \frac{1}{\sqrt{(1,-1)(.532,-.009)(-1)}}$$

Thus is

$$(10.31 - 11.87) \pm 1.796 \sqrt{\frac{16.48}{11}} \sqrt{(1,-1)(.532,-.009)(-1)}$$

$n-$rank$(x) = 15-4 = 11$ \hspace{1cm} t_{11} \text{ upper 5% pt}$

h) Notice in this model that if $H_0: \gamma_1 = \gamma_2 = \gamma_3 = \gamma_4$ is true, then the fact that in the mixture context $\sum x_i = 1$ implies that $E Y = \gamma 1$ for some γ, that is, the mean response is constant. Give the value of and degrees of freedom for an F statistic for testing this hypothesis.

We want

$$F = \frac{SSH_0 / \chi}{SSE / n-$rank$(X)}$$

$$= \frac{116.49/3}{16.48/11} = 25.9$$

$F = 25.9$ \hspace{1cm} $df = 3, 11$