SVM R Example

```r
require(e1071)
set.seed(1)
x <- matrix(runif(20), ncol=1)
x <- x + c(rep(0, 10), rep(.6, 10))
# first 10 x's U(0,1) and last 10 x's U(.6,1.6)
x
y <- c(rep(-1, 10), rep(1, 10))
# first 10 y's -1 and last 10 y's 1
y
plot(x, y)

gam <- 100
# this is half of an inverse squared standard deviation of a normal density
# centered at data points that serve as data-dependent basis function
# for making the SVM voting function
dat <- data.frame(x=x, y=as.factor(y))
svmfit <- svm(y ~ ., data=dat, kernel="radial", gamma=gam, cost=100)
summary(svmfit)
dat
svmfit$index
svmfit$coefs
cbind(dat[svmfit$index,], svmfit$coefs)
plot(x[svmfit$index], c(svmfit$coefs))
```
define "g-beta plus beta0" function that defines the support
vector machine
I'm a bit mystified by the signs here as it seems like I have to
switch the signs on everything to get the right function

BTW rho is -beta0
Vote<-function(z,gamma){
 w<-(-svmfit$rho)
 for (i in 1:length(svmfit$index)){
 w<-w+svmfit$coeffs[i]*exp(-gamma*(z-x[svmfit$index[i]])^2)
 }
 return(-w)
}

now make the SVM predictions
for some reason, predict(svmfit,x) doesn't seem to give the
correct classifications
sign(Vote(x,gam))
votes<-Vote(c((1:2000)/1000),gam)
plot(c((1:2000)/1000),votes)

abline(h=0)

here is the computation of the abstract margin, M, corresponding to the
set of support vectors and their coefficients (alpha's)
M<-1/(sum(abs(svmfit$coeffs))^.5)

M

abline(h=-1)
abline(h=1)

these last 2 lines locate the level of margins in terms of the voting
function (the 0 value gives the decision boundary)
rug(x[1:10], col="red", lwd=3)
rug(x[11:20], col="blue", lwd=3)