HW 7:

Problem 45.

a) by default, we use 10-fold cross-validation here. The range of knn classifier goes from 1 to 21 here.

For N = 400 case:

Here is R-code output:

Parameter tuning of 'knn.wrapper':

- sampling method: 10-fold cross validation

- best parameters:

 \(k = 18 \)

- best performance: 0.4175 : this is the error rate on training for 18-nn

- Detailed performance results:

 \[
 \begin{array}{ccc}
 k & \text{error dispersion} \\
 1 & 0.4800 & 0.06540472 \\
 2 & 0.4950 & 0.0710022 \\
 3 & 0.4925 & 0.08502451 \\
 4 & 0.4950 & 0.09339284 \\
 5 & 0.4625 & 0.07288690 \\
 6 & 0.4475 & 0.07495369 \\
 7 & 0.4450 & 0.08563488 \\
 8 & 0.4725 & 0.07857233 \\
 9 & 0.4775 & 0.07212066 \\
 10 & 0.4650 & 0.09442810 \\
 11 & 0.4550 & 0.06749486 \\
 12 & 0.4475 & 0.05945353 \\
 13 & 0.4375 & 0.06795628 \\
 14 & 0.4350 & 0.07564537 \\
 15 & 0.4375 & 0.07927624 \\
 16 & 0.4300 & 0.07434903 \\
 17 & 0.4250 & 0.09354143 \\
 18 & 0.4175 & 0.09431773 \\
 19 & 0.4250 & 0.08164966 \\
 20 & 0.4300 & 0.08482007 \\
 21 & 0.4275 & 0.06609127 \\
 \end{array}
 \]
Problem 45 a) (left) $N = 400$, error rate vs k (right) performance for 18-nn classifier

$N = 4000$ case

Parameter tuning of ‘knn.wrapper’:
- sampling method: 10-fold cross validation
- best parameters: $k = 19$
- best performance: 0.4235151

Detailed performance results:

<table>
<thead>
<tr>
<th>k</th>
<th>error dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4682212 0.02253985</td>
</tr>
<tr>
<td>2</td>
<td>0.4782365 0.03093815</td>
</tr>
<tr>
<td>3</td>
<td>0.4664650 0.03301308</td>
</tr>
<tr>
<td>4</td>
<td>0.4739852 0.03412457</td>
</tr>
<tr>
<td>5</td>
<td>0.4599736 0.03545803</td>
</tr>
<tr>
<td>6</td>
<td>0.4677338 0.02969492</td>
</tr>
<tr>
<td>7</td>
<td>0.4497405 0.03139836</td>
</tr>
<tr>
<td>8</td>
<td>0.4569993 0.02543870</td>
</tr>
<tr>
<td>9</td>
<td>0.4464797 0.02895795</td>
</tr>
<tr>
<td>10</td>
<td>0.4569327 0.03305593</td>
</tr>
<tr>
<td>11</td>
<td>0.4369600 0.03982293</td>
</tr>
<tr>
<td>12</td>
<td>0.4291999 0.03763466</td>
</tr>
<tr>
<td>13</td>
<td>0.4377415 0.03264795</td>
</tr>
<tr>
<td>14</td>
<td>0.4372490 0.03182687</td>
</tr>
<tr>
<td>15</td>
<td>0.4324977 0.0305444</td>
</tr>
<tr>
<td>16</td>
<td>0.4299763 0.03085898</td>
</tr>
<tr>
<td>17</td>
<td>0.4242318 0.03250511</td>
</tr>
<tr>
<td>18</td>
<td>0.4269932 0.03063469</td>
</tr>
<tr>
<td>19</td>
<td>0.4235151 0.03351471</td>
</tr>
<tr>
<td>20</td>
<td>0.4255077 0.02641613</td>
</tr>
<tr>
<td>21</td>
<td>0.4235265 0.02740486</td>
</tr>
</tbody>
</table>
Problem 45 a) (left) N = 4000, error rate vs k (right) performance for 19-nn classifier

N = 40000 case:

Parameter tuning of ‘knn.wrapper’:
- sampling method: 10-fold cross validation
- best parameters:
 k: 21
 - best performance: 0.4399952
- Detailed performance results:
 - k error dispersion
 1 1 0.4792544 0.004300586
 2 2 0.4742554 0.007722119
 3 3 0.4660932 0.004998922
 4 4 0.4668402 0.007722119
 5 5 0.4610545 0.005941747
 6 6 0.4609399 0.005941747
 7 7 0.4544198 0.006458519
 8 8 0.4555058 0.004496446
 9 9 0.4541618 0.004192825
 10 10 0.4527109 0.00571383
 11 11 0.4482829 0.004081356
 12 12 0.4492207 0.006519132
 13 13 0.4473096 0.005975858
 14 14 0.4469034 0.007396434
 15 15 0.4453103 0.008082419
 16 16 0.4446289 0.003154593
 17 17 0.4438597 0.006902594
 18 18 0.4436067 0.006316764
 19 19 0.4418846 0.007067175
 20 20 0.4407180 0.009567875
 21 21 0.4399952 0.010289518
Problem 45 a) (left) $N = 40000$, error rate vs k
(right) performance for 21-nn classifier

b) First generate a test set of size = 100,000. We can use the same procedure as creating a training set of size N. Below is the code:

```r
N_test = 100000

test <- matrix(0,nrow=N_test,ncol=3)

for(i in 1:N_test){
  test[i,]<-observ(2)
}

The outcome for $N = 400$, 18nn classifier is :

```r
> k=18
> knn.pred=knn(train[,2:3],test[,2:3],train[,1],k=k)
> table(knn.pred,test[,1])

<table>
<thead>
<tr>
<th>knn.pred</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27817</td>
<td>21414</td>
</tr>
<tr>
<td>1</td>
<td>22050</td>
<td>28719</td>
</tr>
</tbody>
</table>
```

It means there are 22050 points, which is supposed to be 0, but 18nn classifier classify it as 1; there are 21414 points, which is supposed to be 1, but 18nn classifier classify it as 0. So the error rate on this test set is

```r
> (22050+21414)/100000
[1] 0.43464
```
The outcome for \( N = 4000 \), 19nn classifier is:

```r
> k=19
> knn.pred<-knn(train[,2:3],test[,2:3], train[,1],k=k)
> table(knn.pred,test[,1])

knn.pred 0 1
0 27786 21885
1 22096 28233
```

So the error rate on this test set is

```r
> (22096+21885)/100000
[1] 0.43981
```

The outcome for \( N = 40000 \), 21nn classifier is:

```r
> k=21
> knn.pred<-knn(train[,2:3],test[,2:3], train[,1],k=k)
> table(knn.pred,test[,1])

knn.pred 0 1
0 26148 20578
1 23839 29435
```

The error rate on this test set is:

```r
> (23839+20578)/100000
[1] 0.44417
```

All of those error rates are higher than the value in problem 43 a).

**Problem 46.**

---

![Diagram](image.png)

Error rate against Bandwidth classifier plot when lambda = 1
Here is the code:

```r
rm(list = ls())
set.seed(1)
Enter the prior and define the two pdf's
We'll use here f0 the uniform density and f1
the density that is the sum of the two
input coordinates
g0 <- .5
g1 <- 1 - g0
density0 <- function(x1, x2) {
y <- 1
return(y)
}
density1 <- function(x1, x2) {
y <- x1 + x2
return(y)
}
generating a training set with size = 400
rejsamp = function(A) {
 while(1) {
 # three independent uniforms
 u = runif(3)
 # Accept or reject candidate value; if rejected
 try again
 if(A*u[3] < density1(u[1], u[2]))
 return(u[1:2])
 }
}
Here is code for making a training sample
of N from g0*density0 + g1*density1
N = 400
train <- matrix(0, nrow = N, ncol = 3)

observ = function (A) {
 u = runif(3)
 if(u[1] < g0)
 return(c(0, u[2:3]))
 else
 return(c(1, rejsamp(2)))
}
for(i in 1:N) {
 train[i,] <- observ(2)
}
update g0 and f0, f1
get the number of N0 and N1 respectively
N0 = sum(train[,1] == 0)
N1 = sum(train[,1] == 1)
cat("there are ", N0, " 0s in this training set.
")
cat("there are ", N1, " 1s in this training set.
")
g0_hat = N0/N
g1_hat = N1/N
cat("g0_hat is updated to ", g0_hat,
")
cat("g1_hat is updated to ", g1_hat,
")
get the training set with y = 0 , y = 1 respectively
idx_0 = which(train[,1] == 0)
train_0 = train[idx_0,]
idx_1 = which(train[,1] == 1)
train_1 = train[idx_1,]
update density
density0_hat = function(x1, x2, lambda) {
 aux = rep(0, nrow(train_0))
 for(i in 1:nrow(train_0)) {
 aux[i] = lambda * density0(x1, x2, lambda)
 }
 return(aux)
}
```
tmp = exp(-0.5*(1/\lambda)*((x1-train_0[i,2])^2+(x2-train_0[i,3])^2))
aux[i] = tmp/(2*pi*\lambda)
}
y = sum(aux)/N0
return(y)
}
density1_hat = function(x1,x2,\lambda) {
aux = rep(0,nrow(train_1))
for(i in 1:nrow(train_1)){
tmp = exp(-0.5*(1/\lambda)*((x1-train_1[i,2])^2+(x2-train_1[i,3])^2))
aux[i] = tmp/(2*pi*\lambda)
}
y = sum(aux)/N1
return(y)
}
#Here is the new classifier
myclassifier <- function(x1,x2,\lambda) {
if (g1_hat*density1_hat(x1,x2,\lambda) >
g0_hat*density0_hat(x1,x2,\lambda)) {result<-1}
else {result<-0}
return(result)
}
#Specify the number of values of both x1 and x2
to use in a grid for plotting
h<-51
#Make vectors to hold both coordinates for the grid
X1<-rep(seq(1:h)-1,h)/(h-1)
X2<-rep(0:(h-1),each=h)/(h-1)
## lambda change from 0.05^2 to 2^2
## err_vec is a vector, recording the error for each lambda case
a = seq(0.05,2,by = 0.1)
err_vec = rep(0,length(a))
for( s in 1:length(a)){
lambda = a[s]*a[s]
# Make a vector of values of the new classifier for points on the grid
Class<-rep(0,h*h)
for (i in 1:(h*h)) {
Class[i] = myclassifier(X1[i],X2[i],lambda)
}
err = sum(Class)/(h*h)
err_vec[s] = err
}
## Plot the error rate against sqrt(\lambda)
x11()
plot(a,err_vec,main = "Error Rate Against Bandwidth Parameter",xlab = "Sqrt(\lambda)",ylab = "Error Rate ")
## choose lambda = 1
lambda = 1
Class<-rep(0,h*h)
for (i in 1:(h*h)) {
Class[i] = myclassifier(X1[i],X2[i],lambda)
}
# Make a plot of the values of the Bayes classifier for points on the grid
x11()
plot(X1,X2,pch=20,col= Class,cex = 2,lwd = 1)
Problem 47.

a). (need to install a R package called “tree” first)

- fit classification trees using tree() function with default parameter settings:

```r
> treeclass1<-tree(y ~ x1+x2,training)
> summary(treeclass1)
```

Classification tree:
tree(formula = y ~ x1 + x2, data = training)
Number of terminal nodes:  3
Residual mean deviance:  1.31 = 520 / 397
Misclassification error rate:  0.38 = 152 / 400 this is the error rate on training set

Below is the corresponding plot:

![Classification tree with default settings](image)

(NTe: in tree() function in “tree” package, the default setting is: mincut = 5, minsize = 10, mindev = 0.01. mincut means the minimum number of observations to include in either child node, default value is 5
minsize means the smallest allowed node size, default value is 10
mindev means the within-node deviance must be at least this times that of the root node for the node to be split default value is 0.01)

- If use the setting in the R-code:

```r
> treeclass<-tree(y ~ x1+x2,training,control=tree.control(nobs=N,mincut=1,minsize=2,mindev=.008))
> summary(treeclass)
```

Classification tree:
This second tree with less error rate on training set, also with more number of nodes.

Use 10-fold cross validation to find a good sub-tree of the full tree with settings, the following plot suggests that the optimal tree size would be 2 or 5.

The error rate on training set for node = 2

```
> summary(prune.best)
```

Classification tree:

```
snip.tree(tree = treeclass, nodes = c(3L, 2L))
```

Variables actually used in tree construction:
The error rate on training set for node = 5:

```r
> summary(prune.best2)

Classification tree:
snip.tree(tree = treeclass, nodes = c(20L, 21L, 3L))
Number of terminal nodes: 5
Residual mean deviance: 1.288 = 508.7 / 395
Misclassification error rate: 0.3475 = 139 / 400
```

Higher complexity with lower error rate on training set here.

Here is the tree plot for node = 2, node = 5, respectively.

b). training size N = 400

```r
> rf.example

Call:
randomForest(formula = y ~ x1 + x2, data = training, type = "classification",
ntree = 500, mtry = 2)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2
OOB estimate of error rate: 42%

Confusion matrix:
0 1
class.error
0 118 90 0.4326923
1 78 114 0.4062500
```

( Note: class.error in the confusion matrix is obtained as followings: )
For the first row, the predicted class is 0s (there are 118 + 90 = 208 0s in
the predicted class. Among those 208 0s, there actually 118 0s, 90 1s in the original class. So the class.error = \( \frac{90}{118+90} = 0.4326923 \)
So is the class.error in the second row: \( \frac{78}{78+114} = 0.40625 \)

When the sample size \( N = 4000 \),

Call:
```
randomForest(formula = y ~ x1 + x2, data = training, type = "classification",
 ntree = 500, mtry = 2)
```
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2

OOB estimate of error rate: 44.47%
Confusion matrix:
```
 0 1 class.error
0 1097 914 0.4545002
1 865 1124 0.4348919
```

Error rate on training set increase as increasing the size of training set.

c) use sample size \( N = 400 \)

alpha = 1:
calculate error rate on training set:

```
> lrfit2.train<-predict(lrfit2,as.matrix(training[,2:3]), s = "lambda.1se", type="class")
> table(lrfit2.train,training[,1])
```
```
lrfit2.train 0 1
0 144 90
1 64 102
```
Again, error rate on training set would be

```
> (64+90)/(400)
[1] 0.385
```

Classification plot for alpha 1
alpha = 0

```r
> lrfit3.train <- predict(lrfit3, as.matrix(training[,2:3]), s = "lambda.1se", type="class")
> table(lrfit3.train, training[,1])
 lrfit3.train 0 1
 0 156 110
 1 52 82

Error rate is

> (52+110)/400
[1] 0.405
```

Classification plot for alpha 0

Alpha = 0.5

```r
> lrfit4.train <- predict(lrfit4, as.matrix(training[,2:3]), s = "lambda.1se", type="class")
> table(lrfit4.train, training[,1])
 lrfit4.train 0 1
 0 141 91
 1 67 101

Error rate is

> (67+91)/400
[1] 0.395
```
d) for the original logistic regression classification, the error rate on training set is:

```r
lrfit<-glm(y~x1+x2,training,family="binomial")
lrfit
summary(lrfit)
get the probability of logistic regression
theProbs_train = predict(lrfit,training[,2:3], type = "response")
calculate error rate
table(theProbs_train>.5, training[,1])
```

```
> table(theProbs_train>.5, training[,1])
 0 1
FALSE 137 84
TRUE 71 108
> (71+84)/400
[1] 0.3875
```
From the discussion of case-control studies on P34-P35 on course outline, probably we would starting a
sandom sample of N0 cases with y =0, and a random sample of N1 controls with y = 1. Usually, N1 is on
the order of 5/6 times N0. Let N0 = 4, N1 = 24. If g(0) = 0.01, sample size of N = 400, logistic regression
will yield the classification plot as below:

But if apply case-control ideal, the modify logistic regression will yield the classification plot as below

which is more reasonable since the g(0) is very small.
## get a sample with N0 0s and N1 1s
N0 = 4
N1 = 24
train_0 = training[sample(which(training[,1]==0),N0),]
train_1 = training[sample(which(training[,1]==1),N1),]
train_new = rbind(train_0,train_1)
## logist regression on this set
lrfit_new = glm(y~x1+x2,train_new,family="binomial")
summary(lrfit_new)
beta_0_cc = coef(lrfit)[1] + log(N0/N1)-
log(0.01/(1-0.01))
beta_1_cc_1 = coef(lrfit)[2]
beta_2_cc_2 = coef(lrfit)[3]
## case_control classifer
case_control_classifer = function(x1,x2){
aux =
exp(beta_0_cc+x1*beta_1_cc_1+x2+beta_2_cc_2)
p0 = aux/(1+aux)
p1 = 1/(1+aux)
if (p0<0.5 ) {result=1}
else {result=0}
return(result)
}
pred_train = rep(0,nrow(train))
for(i in 1:nrow(train)){
  tr_x1 = train[i,2]
  tr_x2 = train[i,3]
pred_train[i] =
case_control_classifer(tr_x1,tr_x2)
}
Class<-rep(0,h*h)
for (i in 1:(h*h)) {
  Class[i]<-case_control_classifer(X1[i],X2[i])
}
x11()
plot(X1,X2,pch=20,col=Class,cex=2,lwd=1)
Parameter tuning of `svm`:
- sampling method: 10-fold cross validation
- best parameters:
  - cost: 0.1
- best performance: 0.395

Detailed performance results:
<table>
<thead>
<tr>
<th>cost</th>
<th>error dispersion</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-03</td>
<td>0.480</td>
<td>0.07888106</td>
</tr>
<tr>
<td>1e-02</td>
<td>0.420</td>
<td>0.05749396</td>
</tr>
<tr>
<td>1e-01</td>
<td>0.395</td>
<td>0.06540472</td>
</tr>
<tr>
<td>1e+00</td>
<td>0.395</td>
<td>0.07051399</td>
</tr>
<tr>
<td>5e+00</td>
<td>0.395</td>
<td>0.07051399</td>
</tr>
<tr>
<td>1e+01</td>
<td>0.395</td>
<td>0.07051399</td>
</tr>
<tr>
<td>1e+02</td>
<td>0.395</td>
<td>0.07051399</td>
</tr>
<tr>
<td>1e+03</td>
<td>0.395</td>
<td>0.07051399</td>
</tr>
</tbody>
</table>

The good svm is achieved when cost = 0.1, with error rate 0.395 on training set of size N = 400. This is associated classification plot.
f) ensemble average method:

\[ p_{\text{new}}(y = 0|x) = \frac{1}{3} \cdot [p_{(\alpha=0)}(y = 0|x) + p_{(\alpha=0.5)}(y = 0|x) + p_{(\alpha=1)}(y = 0|x)] \]

ensemble majority voting method:

\[ p_{\text{new}}(x) = \frac{1}{3} \cdot [p_{(\alpha=0)}(x) + p_{(\alpha=0.5)}(x) + p_{(\alpha=1)}(x)] \]

\[ y_{\text{new}}(x) = I(p_{\text{new}}(x) > 0.5) \]

First plot the classification ensemble average method and ensemble majority voting method on 51*51 grid points,

Next, compare these two methods on a test set of size 100000,

For ensemble average method, the error rate is

\[
\text{table(ensemble_average_test,test_set[,1])}
\]

<table>
<thead>
<tr>
<th>ensemble_average_test</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>32708 26371</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17163 23758</td>
</tr>
</tbody>
</table>

\[
(17163+26371)/100000
\]

[1] 0.43534

For ensemble majority voting method, the error rate is

\[
\text{table(ensemble_voting_test,test_set[,1])}
\]

<table>
<thead>
<tr>
<th>ensemble_voting_test</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>32316 26254</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17555 23875</td>
</tr>
</tbody>
</table>

\[
(17555+26254)/100000
\]

[1] 0.43809
Here is the R code for this part:

```r
lrfit2
lrfit2 <- cv.glmnet(as.matrix(training[,2:3]), training[,1], family="binomial", alpha=1, standardize=TRUE)
lrfit2
summary(lrfit2)

get the probability: note this is the p(y=1|x)
lrfit2.preds <- predict(lrfit2, as.matrix(newdata), s = "lambda.1se", type="response")

Setting alpha to 0 gives the penalty involving squares of the coefficients
lrfit3 <- cv.glmnet(as.matrix(training[,2:3]), training[,1], family="binomial", alpha=0, standardize=TRUE)
lrfit3.preds <- predict(lrfit3, as.matrix(newdata), s = "lambda.1se", type="response")

Setting alpha to 0.5 gives the penalty involving squares of the coefficients
lrfit4 <- cv.glmnet(as.matrix(training[,2:3]), training[,1], family="binomial", alpha=0.5, standardize=TRUE)
lrfit4.preds <- predict(lrfit4, as.matrix(newdata), s = "lambda.1se", type="response")

Ensemble_average_classify = rep(0, h*h)
for (i in 1:(h*h)) {
 p = c(lrfit2.preds[i], lrfit3.preds[i], lrfit4.preds[i])
 ## get the p_hat(y=0|x)
 p0 = 1 - p
 p0_new = (1/3) * sum(p0)
 if(p0_new<0.5){
 Ensemble_average_classify[i] = 1
 } else{
 Ensemble_average_classify[i] = 0
 }
}
x11()
plot(X1, X2, pch=20, main = "Ensemble average method", col= Ensemble_average_classify, cex=2, lwd=1)

Ensemble_voting_classify = rep(0, h*h)
for (i in 1:(h*h)) {
 p = c(lrfit2.preds[i], lrfit3.preds[i], lrfit4.preds[i])
 ## get class
 y_pre = as.numeric(p>0.5)
 p0_new = (1/3) * sum(y_pre)
 if(p0_new>0.5){
 Ensemble_voting_classify[i] = 1
 } else{
 Ensemble_voting_classify[i] = 0
 }
}
```

```
for (i in 1:N_test) {
 p = c(lrfit2.preds_test[i], lrfit3.preds_test[i], lrfit4.preds_test[i])
 ## get the p_hat(y=0|x)
 p0 = 1 - p
 p0_new = (1/3) * sum(p0)
 if (p0_new < 0.5) {
 ensemble_average_test[i] = 1
 } else {
 ensemble_average_test[i] = 0
 }
}

get the performance of ensemble average method on this test set
table(ensemble_average_test, test_set[, 1])

ensemble majority voting method on this test set
ensemble_voting_test = rep(0, N_test)
for (i in 1:N_test) {
 p = c(lrfit2.preds_test[i], lrfit3.preds_test[i], lrfit4.preds_test[i])
 ## get the p_hat(y=0|x)
 p0 = 1 - p
 p0_new = (1/3) * sum(p0)
 if (p0_new < 0.5) {
 ensemble_voting_test[i] = 1
 } else {
 ensemble_voting_test[i] = 0
 }
}

get the performance of ensemble voting method on this test set
table(ensemble_voting_test, test_set[, 1])
get the $p_{hat}(y=0|X)$

```r
y_pre = as.numeric(p > 0.5)
p0_new = (1/3)*sum(y_pre)
if(p0_new>0.5){
  ensemble_voting_test[i] = 1
} else{
  ensemble_voting_test[i] = 0
}
```

get the performance of ensemble voting method on this test set

```r
table(ensemble_voting_test, test_set[,1])
```
Problem 48

Here is the tree classification with default settings:

Here is the tree classification with complexity settings:

Cross validation to choose the best number of node:
So the best tree size would be 2.