Problem Set 3 Solutions

Exercise 3.1 (Devore 2.29).

a. Domain names with just 2 letters: this is like sampling from a bag of 26 unique blocks with replacement. \# names = (# letters) \times (# letters) = 26 \times 26 = \boxed{676}.

Domain names of length 2 with digits and letters: this time we have 36 things to choose from (26 letters, 10 digits. \# names = 36 \times 36 = \boxed{1296})

b. This is exactly like part (a) except that now, domain names are 3 characters long instead of 2. Without digits: \# names = 26^3 = \boxed{17,576}

With digits: \# names = 36^3 = \boxed{46,656}.

c. 26^4 = \boxed{456,976} \cdot 36^4 = \boxed{1,679,616}

d. probability that a 4-character name is already taken = 1 - probability that a name is available = 1 - \frac{\# available names}{\# allowable names} = 1 - \frac{97786}{36^4} = \boxed{.942}

Exercise 3.2 (Devore 2.32).

a. 5 for receiver \times 4 for disc player \times 3 for speakers \times 4 for turntable = \boxed{240}

b. 1 \times 1 \times 3 \times 4 = \boxed{12}

c. 4 \times 3 \times 3 = \boxed{108}

d. \# ways with at least one Sony component = (total \# ways) - (\# with no Sony component) = 240 - 4 \times 3 \times 3 = \boxed{132}

e. P(at least one Sony component) = \frac{\# ways to select at least one Sony component}{total \# possible selections} = \frac{132}{240} = \boxed{.55}

P(exactly one sony component) = P(the only Sony component is the receiver) + P(the only Sony component is the compact disc player) + P(the only Sony component is the turntable) = \frac{1 \times 4 \times 3 \times 3}{240} + \frac{4 \times 3 \times 3}{240} + \frac{4 \times 3 \times 1}{240} = \boxed{.413}
Exercise 3.3 (Devore 2.34).

(a) \(\binom{25}{5} = \frac{25!}{5!20!} = 53,130 \)

(b) \# ways = (# ways to select 2 with electrical defects) \times (# ways to select 3 without electrical defects) = \(\frac{6!}{2!4!} \cdot \frac{19!}{16!3!} = 14535 \)

(c) \(\text{P(at least 4)} = \text{P(exactly 4)} + \text{P(exactly 5)} = \frac{\binom{19}{4} \cdot \binom{6}{1}}{\binom{25}{5}} + \frac{\binom{19}{5} \cdot \binom{6}{0}}{\binom{25}{5}} = 0.6565 \)

Exercise 3.4 (Devore 2.38).

(a) \(\text{P(select 2 75-W bulbs)} = \frac{\binom{6}{2} \cdot \binom{9}{1} \cdot \binom{15}{3}}{\binom{15}{3}} = .2967 \)

(b) \(\text{P(same rating)} = \text{P(select all 40-W)} + \text{P(select all 60-W)} + \text{P(select all 75-W)} = \frac{\binom{4}{3} \cdot \binom{15}{3}}{\binom{15}{3}} + \frac{\binom{5}{3} \cdot \binom{15}{3}}{\binom{15}{3}} + \frac{\binom{6}{3} \cdot \binom{15}{3}}{\binom{15}{3}} = .0747 \)

(c) \(\frac{\binom{4}{1} \cdot \binom{5}{1} \cdot \binom{6}{1}}{\binom{15}{3}} = .2637 \)

(d) \(\text{P(examine at least six bulbs)} = \text{P(draw 5 non-75-W bulbs)} = \frac{\binom{4+5}{5}}{\binom{15}{5}} = .042 \)

Exercise 3.5 (Devore 2.71).

(a) Since \(A \) and \(B \) are independent \(A' \) and \(B' \) are independent (see page 83 just below Equation 2.7). Hence, \(\text{P}(B' \mid A') = P(B') = 1 - P(B) = 1 - .7 = .3 \)

(b) \(\text{P}(A \cup B) = P(A) + P(B) - P(A \cap B) \overset{\text{independence}}{=} P(A) + P(B) - P(A)P(B) = .4 + .7 - .4 \cdot .7 = .82 \)

(c) \(\text{P}(A \cap B' \mid A \cup B) = \frac{\text{P}(A \cap B')}{\text{P}(A \cup B)} = \frac{P(A \cap B')}{P(A\cup B)} \overset{\text{independence}}{=} \frac{\text{P}(A)P(B')}{P(A \cup B)} = .4 \cdot .7 \cdot .82 = .146 \)

Exercise 3.6 (Devore 2.77).
a. Let p be the probability that a given rivet is defective. Then:

\[.2 = P(\text{seam is defective}) = 1 - P(\text{seam is good}) = 1 - P(\text{all 25 rivets are good}) = 1 - P(\text{rivet 1 is good}) \cap \cdots \cap P(\text{rivet 25 is good}) = 1 - (1 - p)^{25}\]

Hence, $p = 0.00889$

b. Use the calculation above: if only 10% of the seams need reworking, then

\[.1 = 1 - (1 - p)^{25}, \text{ so } p = 0.00421\]

Exercise 3.7 (Devore 2.78).

\[P(\text{at least one valve opens}) = 1 - P(\text{no valve opens}) = 1 - (1 - 0.95)^5 \approx 1 - 0.9999969 = 0.99999969\]

Exercise 3.8 (Devore 2.79).

Let O be the event that the older pump fails and N be the event that the newer pump fails. We are given that $P(O \cap N') = .1$ and $P(O' \cap N) = .05$ (look carefully at the prompt. For each pump, it gives the probability that ONLY that pump will fail). By the Law of Total Probability,

\[P(O) = P(O \cap N) + P(O \cap N') = x + .1\]
\[P(N) = P(O \cap N) + P(O' \cap N) = x + .05\]

where $x = P(O \cap N)$. Since the pumps fail independently of one another,

\[x = P(O \cap N) = P(O) \cdot P(N) = (x + .1)(x + .05)\]
\[\Rightarrow x^2 - .85x + .005 = 0\]

We solve the above quadratic equation to get $x = .0059$ or $x = .8441$. Hence, $P(O \cap N) = .0059$ or .8441. Hopefully, the true system failure probability is the smaller of the two, but we can’t know with the information given.

Exercise 3.9 (Devore 2.80).

Let C_i be the event that the i'th component FAILS. Then, $P(\text{system works}) =$
1 - P(system fails) =

\[1 - P(C_1 \cap C_2 \cap (C_3 \cup C_4)) \]

\[= 1 - P(C_1)P(C_2)P(C_3 \cup C_4) \]

\[= 1 - P(C_1)P(C_2)[P(C_3) + P(C_4) - P(C_3 \cap C_4)] \]

\[= 1 - P(C_1)P(C_2)[P(C_3) + P(C_4) - P(C_3)P(C_4)] \]

\[= 1 - .1 \cdot .1 \cdot (.1 + .1 - .1 \cdot .1) \]

\[= .9981 \]

Exercise 3.10 (Devore 3.11).

a.

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(x)</td>
<td>.45</td>
<td>.40</td>
<td>.15</td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.5</td>
<td>0.4</td>
<td>.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Exercise 3.11 (Devore 3.12).

a. P(everyone is accommodated) =

\[P(Y \leq 50) = .05 + .1 + .12 + .14 + .25 + .17 = .83 \]
b. \(P(\text{not everyone is accommodated}) = 1 - P(\text{everyone is accommodated}) = 1 - .83 = .17 \)

c. \(P(\text{first person on standby gets a seat}) = P(Y \leq 49) = .05 + .1 + .12 + .14 + .25 = .66 \) Assuming the first and second people on standby actually take seats if they are available,
\(P(\text{third person on standby gets a seat}) = P(Y \leq 47) = .05 + .1 + .12 = .27 \),

Exercise 3.12 (Devore 3.13).

a. \(P(X \leq 3) = p(0) + p(1) + p(2) + p(3) = .10 + .15 + .20 + .25 = .70 \)

b. \(P(X < 3) = P(X \leq 2) = p(0) + p(1) + p(2) = .45 \)

c. \(P(X \geq 3) = p(3) + p(4) + p(5) + p(6) = .55 \)

d. \(P(2 \leq X \leq 5) = p(2) + p(3) + p(4) + p(5) = .71 \)

e. The number of lines not in use is \(6 - X \), so we calculate \(P(2 \leq 6 - X \leq 4) = P(-4 \leq X - 6 \leq -2) = P(2 \leq X \leq 4) = p(2) + p(3) + p(4) = .65 \)

f. \(P(6 - X \geq 4) = P(6 \geq X + 4) = P(2 \geq X) = p(0) + p(1) + p(2) = .45 \)

Exercise 3.13 (Devore 3.22).

\[
\begin{align*}
F(0) &= P(X \leq 0) = .1 \\
F(1) &= P(X \leq 1) = .1 + .15 = .25 \\
F(2) &= P(X \leq 2) = .1 + .15 + .2 = .45 \\
F(3) &= P(X \leq 3) = .1 + .15 + .2 + .25 = .7 \\
F(4) &= P(X \leq 4) = .1 + .15 + .2 + .25 + .2 = .9 \\
F(5) &= P(X \leq 5) = .1 + .15 + .2 + .25 + .2 + .06 = .96 \\
F(6) &= P(X \leq 6) = .1 + .15 + .2 + .25 + .2 + .06 + .04 = 1
\end{align*}
\]

Hence:

<table>
<thead>
<tr>
<th>(F(x))</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>(x < 0)</td>
</tr>
<tr>
<td>.10</td>
<td>(0 \leq x < 1)</td>
</tr>
<tr>
<td>.25</td>
<td>(1 \leq x < 2)</td>
</tr>
<tr>
<td>.45</td>
<td>(2 \leq x < 3)</td>
</tr>
<tr>
<td>.70</td>
<td>(3 \leq x < 4)</td>
</tr>
<tr>
<td>.90</td>
<td>(4 \leq x < 5)</td>
</tr>
<tr>
<td>.96</td>
<td>(5 \leq x < 6)</td>
</tr>
<tr>
<td>1.00</td>
<td>(6 \leq x)</td>
</tr>
</tbody>
</table>
And:

a. \(P(X \leq 3) = F(3) = 0.70 \)
b. \(P(X < 3) = P(X \leq 2) = F(2) = 0.45 \)
c. \(P(3 \leq X) = 1 - P(X \leq 2) = 1 - F(2) = 1 - 0.45 = 0.55 \)
d. \(P(2 \leq X \leq 5) = F(5) - F(1) = 0.96 - 0.25 = 0.71 \)

Exercise 3.14 (Devore 3.23).
Using the shortcut formula for variances,
\[(50 - 47)^2 \cdot p(47) + (51 - 47)^2 \cdot p(50) + (52 - 47)^2 \cdot p(51) + (53 - 47)^2 \cdot p(52) + (54 - 47)^2 \cdot p(53) + (55 - 47)^2 \cdot p(54) = \frac{1}{2} \cdot (25 + 2 + 1 + 2) = 39.557 \]

Exercise 3.15 (Devore 3.29).

a. \[E(X) = \sum x \cdot p(x) = (1)(.05) + (2)(.1) + (4)(.35) + (8)(.4) + (16)(.1) = 6.45 \]

b. \[V(X) = \sum (x - E(X))^2 \cdot p(x) = (1 - 6.45)^2 \cdot (.05) + (2 - 6.45)^2 \cdot (.1) + (4 - 6.45)^2 \cdot (.35) + (8 - 6.45)^2 \cdot (.4) + (16 - 6.45)^2 \cdot (.1) = 15.6475 \]

c. \[\sigma_\chi = \sqrt{\chi} = 3.9557 \]

d. First, we compute \[E(X^2) = \sum x^2 \cdot p(x) = (1^2)(.05) + (2^2)(.1) + (4^2)(.35) + (8^2)(.4) + (16^2)(.1) = 57.25 \] Next, we use the shortcut formula to calculate \[V(X) = E(X^2) - [E(X)]^2 = 57.25 - 6.45^2 = 15.6475 \]

Exercise 3.16 (Devore 3.31).

\[E(Y) = \sum y \cdot p(y) = (45)(.05) + (46)(.1) + (47)(.12) + (48)(.14) + (49)(.25) + (50)(.17) + (51)(.06) + (52)(.05) + (53)(.03) + (54)(.02) + (55)(.01) = 48.84 \]

\[E(Y^2) = \sum y^2 \cdot p(y) = (45^2)(.05) + (46^2)(.1) + (47^2)(.12) + (48^2)(.14) + (49^2)(.25) + (50^2)(.17) + (51^2)(.06) + (52^2)(.05) + (53^2)(.03) + (54^2)(.02) + (55^2)(.01) = 2389.84 \]

Using the shortcut formula for variances, \[V(Y) = E(Y^2) - [E(Y)]^2 = 2389.84 - 48.84^2 = 4.4944 \] Also, \[\sigma_Y = \sqrt{V(Y)} = 2.12 \]

Now, if a value \(y \) is within one standard deviation of the mean of \(Y \), then \[E(Y) - \sigma_Y \leq y \leq E(Y) + \sigma_Y = 48.84 - 2.12 \leq y \leq 48.84 + 2.12 = 46.72 \leq y \leq 50.96 \]

Since \(y \) only takes on the integers 45 through 55, this means \[47 \leq y \leq 50 \]. Hence, \(P(Y \) falls within one standard deviation of its mean) = \[P(47 \leq Y \leq 50) = p(47) + p(48) + p(49) + p(50) = .12 + .14 + .25 + .17 = .68 \]

Exercise 3.17 (Devore 3.35).

If the store owner stocks 3 copies, then the profit \(h_3(x) \) (sales revenue - cost) is \[4x - 2 \cdot 3 = 4x - 6 \] for \(x = 1, 2, 3 \). Since the owner can only sell as much as he stocks, \(h_3(x) = 4 \cdot 3 - 2 \cdot 3 = 6 \) for \(x = 4, 5, 6 \). Similarly, if the owner stocks 4 copies, then the profit \(h_4(x) \) is \[4 \cdot x - 2 \cdot 4 = 4x - 8 \] for \(x = 1, 2, 3, 4 \) and \[4 \cdot 4 - 2 \cdot 4 = 8 \] for \(x = 5, 6 \). To summarize:
If \(Y = h_3(X) \), then

\[
\]

If \(Z = h_4(X) \), then

\[
\]

Since \(E(Y) < E(Z) \), the owner should probably stock 4 copies instead of 3.

Exercise 3.18 (Devore 3.36).
Let \(H(X) \) be the company’s profit without the premium: \(D(X) - X \), where \(D \) is the deductible. Since the consumer pays no deductible if there is no accident and pays the full deductible if total damage is at least $500,

<table>
<thead>
<tr>
<th>(x)</th>
<th>(p(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/15</td>
</tr>
<tr>
<td>2</td>
<td>2/15</td>
</tr>
<tr>
<td>3</td>
<td>3/15</td>
</tr>
<tr>
<td>4</td>
<td>4/15</td>
</tr>
<tr>
<td>5</td>
<td>3/15</td>
</tr>
<tr>
<td>6</td>
<td>2/15</td>
</tr>
</tbody>
</table>

\[
E[H(X)] = (0)(.8) + (-500)(.1) + (-4500)(.08) + (-9500)(.02) = -600.
\]

Hence, if the company wants a profit of $100, it should charge an annual premium of $700.

Exercise 3.19 (Devore 3.39).
\[
E(X) = (1)(.2) + (2)(.4) + (3)(.3) + (4)(.1) = 2.3
\]

\[
E(X^2) = (1^2)(.2) + (2^2)(.4) + (3^2)(.3) + (4^2)(.1) = 6.1
\]

\[
V(X) = E(X^2) - E^2(X) = 6.1 - 2.3^2 = .81
\]

The number of pounds left is \(H(X) = 100 - 5X \), so

\[
E[H(X)] = E(100 - 5X) = 100 - 5E(X) = 100 - 5 \cdot 2.3 = 88.5 \quad \text{and}
\]

\[
V[H(X)] = V(100 - 5X) = 5^2V(X) = 5^2 \cdot .81 = 20.25
\]