Multiple Pest Resistance in Elite Corn Inbreds and Hybrids

Xinzhi Ni1, Wenwei Xu2, Michael Blanco3, Jeffrey P. Wilson1, and G. David Buntin4

1 USDA-ARS-CGBRU, Tifton, GA 31793
2 Texas A&M University, Lubbock, Texas 79403
3 USDA-ARS, Ames, IA 50011
4 Entomology, University of Georgia, Griffin, GA 30223
Goal of Program

To reduce insect damage and mycotoxin contaminations in corn by:

a) Screening for native insect and disease resistance;

b) Developing new corn germplasm;

c) Understanding the mechanisms.
Entomology Program

Approaches

Field

- New Inbreds/Hybrids
- Field Screening

Laboratory

- Mol./Biochem./Physiol. Bases
- Resis./Suscept. traits

Objectives

1) Field Screening
 - Single insect → Multiple pests

2) Insect Resistance/Susceptibility Bases
 - Biochem./Physiol. bases ↔ Phenotypic traits

3) Recombination
 - Multiple Innate resistant traits (Pathogens + Insects)
Experiment Objectives

1) To evaluate ear and kernel insect and disease resistance;

2) To assess correlation among the parameters;

3) To identify best inbred lines and hybrids conferring multiple pest resistance.
Experimental Protocols

• 20 elite GEM inbred lines and 20 hybrids from Iowa and Texas
• 2 controls for inbreds and hybrids
• 2 years: 2007 and 2008
• 6 or 7 damage-related parameters
Evaluation Parameters

- **Five pest damage:**
 - Corn earworm (artificial)
 - Stink bugs
 - Maize weevil
 - Kernel-chewing insects
 - Ear smut (and ear rot)

- **Two phenotypic Traits:**
 - Husk tightness
 - Husk extension
The corn earworm, *Helicoverpa zea* (Boddie)
The fall armyworm, *Spodoptera frugiperda* (J.E. Smith)
(Lepidoptera: Noctuidae)

Ear Damage Rating Scale:
1 = silk damage
2+ = 1 + centimeter(s) of penetration;
Brown stink bug, *Euschistus servus* (Say)
Southern green stink bug, *Nezara viridula* (L.)
(Hemiptera: Pentatomidae)
Stink Bug-Discolored Kernels

Discolored kernels (%) = \frac{\text{Number of discolored}}{\text{row column}}
The maize weevil, *Sitophilus zeamais* Motschulsky (Coleoptera: Curculionidae)

Percentage of weevil-damaged kernels
Kernel-Chewing Insect Damage (%)

1) Sap beetles, *Carpophilus* spp. (Coleoptera: Nitidulidae)

2) Pink scavenger caterpillar [*Sathrobrota (Pyroderces) rileyi* (Walsingham)] (Lepidoptera: Cosmopterygidae)

3) Chocolate milkworm, *Moodna* spp. (Lepidoptera: Pyralidae)

http://www.entsoc.org/Pubs/Books/Handbooks/corn_samples.htm
Common smut (*Ustilago maydis*)

Smut-infected ears (% per plot)
Phenotypic Traits

• **Husk coverage (or extension) (cm):**
 • Measured from tip of the cob to the tip of the husk;

• **Husk tightness (Rector et al. 2002):**
 (rated as loose-tight = 1 - 5):
 1 = very loose; 4 = tight;
 2 = loose; 5 = very tight;
 3 = moderately tight;
Experimental Design and Data Analyses

• Randomized complete block design with 4 replications each year for two years;

 a) Analysis of variance within a parameter: PROC MIXED
 b) Among the parameters:
 PROC CORR
 PROC CLUSTER
 PROC TREE
Results

A) Analysis of variance among the inbred lines:

• Pest damage ratings:
 Corn earworm \((F = 3.26; \text{df} = 21, 1686; P < 0.0001) \)
 Stink bugs \((F = 2.13; \text{df} = 21, 1690; P = 0.0021) \)
 Maize weevil \((F = 2.91; \text{df} = 21, 1690; P < 0.0001) \)
 Kernel-chewing insects \((F = 4.60; \text{df} = 21, 1688; P < 0.0001) \)
 Ear smut \((F = 2.64; \text{df} = 21, 63; P = 0.0016) \)

• Phenotypic Traits:
 Husk tightness \((F = 20.08; \text{df} = 21, 1646; P < 0.0001) \)
 Husk extension \((F = 15.56; \text{df} = 21, 1684; P < 0.0001) \)
Results

B) Correlation among the parameters:

• Pest damage:
 • Corn earworm (CEWd)
 • Stink bugs (SBpct)
 • Maize weevil (MWpct)
 • Kernel-chewing insects (KCpct)
 • Earsmut

• Phenotypic traits:
 • Husk tightness (HTight)
 • Husk extension (HEextn)
Correlation Among All Parameters

<table>
<thead>
<tr>
<th></th>
<th>HTight</th>
<th>HExtn.</th>
<th>CEWd</th>
<th>kept</th>
<th>sbpt</th>
<th>mwpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>HExtn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r = -0.5$</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P = 0.03$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEWd</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kept</td>
<td>-0.14</td>
<td>-0.10</td>
<td>0.63</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.67</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbpt</td>
<td>-0.63</td>
<td>0.26</td>
<td>0.14</td>
<td>0.48</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.25</td>
<td>0.52</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mwpt</td>
<td>-0.32</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.22</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.98</td>
<td>0.94</td>
<td>0.33</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>earsmut</td>
<td>0.13</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.17</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.83</td>
<td>0.69</td>
<td>0.41</td>
<td>0.44</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Results

C) Identification of the Best GEM Inbred Lines and Hybrids:

Dilemma:
Rankings of the parameters are not always agree;

Resolution:
Using principal component analysis and cluster analysis
Cluster Analysis

Original Data

Standardization

Principal Component Analysis

Cluster Analysis → Dendrogram
Principal Component Analysis
- All seven parameters for inbreds

Eigenvalues of the Covariance Matrix

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prin1</td>
<td>2.43012665</td>
<td>0.90130437</td>
<td>0.3472</td>
</tr>
<tr>
<td>Prin2</td>
<td>1.52882228</td>
<td>0.39428887</td>
<td>0.2184</td>
</tr>
<tr>
<td>Prin3</td>
<td>1.13453341</td>
<td>0.17158605</td>
<td>0.1621</td>
</tr>
<tr>
<td>Prin4</td>
<td>0.96294736</td>
<td>0.48001751</td>
<td>0.1376</td>
</tr>
<tr>
<td>Prin5</td>
<td>0.48292985</td>
<td>0.18199450</td>
<td>0.0690</td>
</tr>
<tr>
<td>Prin6</td>
<td>0.30093535</td>
<td>0.14123026</td>
<td>0.0430</td>
</tr>
<tr>
<td>Prin7</td>
<td>0.15970509</td>
<td>0.0228</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Inbred Dendrogram: 7 Parameters
Best Inbred Lines

- Nine entries:
 3, 4, 5, 6, 7, 8, 10, 14, and 20

- Sources:
 Iowa: 3, 4, 5, 6, 7, 8, and 10
 Texas: 14, and 20
The Best GEM Inbreds

<table>
<thead>
<tr>
<th>Entry</th>
<th>Source</th>
<th>GEM Code</th>
<th>Pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>IA</td>
<td>GEMN-0128</td>
<td>(1881-002/98_DKXL370AN11F2S3_7521-05)-B-B</td>
</tr>
<tr>
<td>4</td>
<td>IA</td>
<td>GEMN-0131</td>
<td>(1883-002/98_DKXL370AN11F2S3_7521-05)-B-B</td>
</tr>
<tr>
<td>5</td>
<td>IA</td>
<td>GEMN-0130</td>
<td>(1883-001/98_DKXL370AN11F2S3_7521-05)-B-B</td>
</tr>
<tr>
<td>6</td>
<td>IA</td>
<td>GEMN-0132</td>
<td>(1886-003/98_DKXL370AN11F2S3_7521-05)-B</td>
</tr>
<tr>
<td>7</td>
<td>IA</td>
<td>GEMN-0133</td>
<td>(1895-001/98_DKXL370AN11F2S3_7521-29)-B-B</td>
</tr>
<tr>
<td>8</td>
<td>IA</td>
<td>GEMN-0124</td>
<td>(1507-001/98_DK212TN11F2S3_7431-03)-B-B</td>
</tr>
<tr>
<td>10</td>
<td>IA</td>
<td>GEMN-0047</td>
<td>UR13085:N0215-014-001-B-B-B-B-Sib-B-B</td>
</tr>
<tr>
<td>14</td>
<td>TX</td>
<td>CUBA117:s15</td>
<td>F7-1A-1-1-1-1-B</td>
</tr>
<tr>
<td>20</td>
<td>TX</td>
<td>SCROGP3:N1411a</td>
<td>F8-1-1-1-B-B-B-B</td>
</tr>
</tbody>
</table>
GEM Hybrid Categorization

- Cluster analysis
- Dendrogram
Hybrid Dendrogram: 6 Parameters
Best Hybrids

• Eight entries:
 1, 4, 5, 6, 7, 8, 10, and 15

• Sources:
 Iowa: 1, 4, 5, 6, 7, 8, and 10
 Texas: 15
The Best GEM Hybrids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Source</th>
<th>Pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IA</td>
<td>BR51721: N2012-098-002 x HC33</td>
</tr>
<tr>
<td>4</td>
<td>IA</td>
<td>1883-002/98 DKXL 370AN11F2S3xT1</td>
</tr>
<tr>
<td>5</td>
<td>IA</td>
<td>1883-001/98 DKXL 370AN11F2S3xT8</td>
</tr>
<tr>
<td>6</td>
<td>IA</td>
<td>1886-003/98 DKXL 370AN11F2S3xT8</td>
</tr>
<tr>
<td>7</td>
<td>IA</td>
<td>1895-001/98 DKXL 370AN11F2S3xT8</td>
</tr>
<tr>
<td>8</td>
<td>IA</td>
<td>1507-001/98 DK212TN11F2S3xT8</td>
</tr>
<tr>
<td>10</td>
<td>IA</td>
<td>UR13085: N0215-14-1-B x LH200</td>
</tr>
<tr>
<td>15</td>
<td>TX</td>
<td>H06:341x202</td>
</tr>
</tbody>
</table>
Conclusions

1) Corn ear damage was positively correlated to kernel-chewing insect damage;

2) Stink bug damage was positively correlated to kernel-chewing insect and maize weevil damage; and negatively correlated to husk tightness;

3) Nine inbred lines and eight hybrids were identified as multiple pest resistant.
Next Step

• Screening for foliage-feeding fall armyworm resistance on these lines using artificial infestation;
• Screening for low aflatoxin contamination using artificial inoculation with *Aspergillus flavus*;
• Mechanisms for multiple pest resistance.
Entomology Program

Approaches

Field Screening

Mol./Biochem./Physiol. Bases

Resist./Suscept. traits

New Inbreds/Hybrids

Objectives

1) Field Screening

Single insect → Multiple pests

2) Insect Resistance/Susceptibility Bases

Biochem./Physiol. bases ↔ Phenotypic traits

3) Recombination

Multiple Innate resistant traits (Pathogens + Insects)