1. The windchill W depends on the speed v of the wind and the actual temperature T. It is given by the formula

$$W(v, T) = 35.74 + 0.6215T - 35.75(v^{0.16}) + 0.4275T(v^{0.16})$$

where T is the air temperature in degrees Fahrenheit,

$v =$ wind speed (in mph)

W is the windchill temperature in degrees Fahrenheit.

(a) Tell the windchill if the true temperature is 35 degrees F and the wind is 10 mph.
(b) Tell the windchill if the true temperature is 35 degrees F and the wind is 20 mph.
(c) Tell the windchill if the true temperature is 5 degrees F and the wind is 10 mph.
(d) Tell the windchill if the true temperature is 5 degrees F and the wind is 20 mph.
(e) Tell the windchill if the true temperature is 35 degrees F and the wind is 0 mph.

Answers:
(a) 27.4 degrees F
(b) 23.9 degrees F
(c) -9.7 degrees F
(d) -15.4 degrees F
(e) 57.5 degrees F

2. Recall that the body mass index is given by the formula

$$B(w,h) = \frac{703 \, w}{h^2}$$

The units of B are kg/m2 when w is the weight in pounds and h is the height in inches.

(a) Tell the body mass index of a man who is 6 feet 2 inches tall and weighs 180 pounds.
(b) Tell the body mass index of a man who is 5 feet 9 inches tall and weighs 300 pounds.
(c) Tell the body mass index of a man who is 5 feet 10 inches tall and weighs 120 pounds.

Using the chart tell how the weight is classified.

Answers:
(a) 23.1 kg/m2 normal
(b) 44.3 kg/m2 obese
(c) 17.2 underweight

3. The temperature T at (x,y,z) is

$$T(x,y,z) = 2x^2 + 2y^2 + z^2$$

degrees C.

Find the temperature at the point $(1, 2, 3)$.

Answer: 19 degrees C.

4. Tell the rate of flow of blood in a blood vessel that has radius 0.15 cm, length 3 mm, with a pressure change of 15 mmHg, and viscosity 0.005 Pascal sec.

Answer:
Hence $V = 265$ cc/sec.

5. Draw a contour map for the function $f(x,y) = x+y$.

6. Draw a contour map for the function $f(x,y) = 2x + y$.

7. Draw a contour map for the function $f(x,y) = x \cdot y$.
1. If \(f(x,y) = 4x^5y^3 \) find

 (a) \(\frac{\partial f}{\partial y}(x,y) \)
 (b) \(\frac{\partial f}{\partial x}(x,y) \)
 (c) \(\frac{\partial f}{\partial x}(1,2) \)
 (d) \(\frac{\partial f}{\partial y}(1,2) \)
 (e) \(\frac{\partial^2 f}{\partial y^2}(x,y) \)
 (f) \(\frac{\partial^2 f}{\partial x^2}(x,y) \)
 (g) \(\frac{\partial^2 f}{\partial x \partial y}(x,y) \)
 (h) \(\frac{\partial^2 f}{\partial x^2}(1,2) \)
 (i) \(\frac{\partial^2 f}{\partial x \partial y}(1,2) \)
 (j) \(\frac{\partial^2 f}{\partial y^2}(1,2) \)

 Answers:

 (a) \(12x^4y^2 \)
 (b) \(20x^4y^3 \)
 (c) \(160 \)
 (d) \(48 \)
 (e) \(24x^4y \)
 (f) \(80x^3y^3 \)
 (g) \(48x^3y^2 \)
 (h) \(48 \)
 (i) \(640 \)
 (j) \(192 \)

2. The temperature at point \((x,y)\) is \(z = 30 + 3x^2 + 4xy \) degrees, where \(x \) and \(y \) are in feet.
 (a) Find the rate of change of temperature with respect to \(x \) when \(y \) is constantly 2, at \(x = 1 \).
 (b) Find the rate of change of temperature with respect to \(y \) when \(x \) is constantly 1, at \(y = 2 \).
 (c) Find the rate of change of temperature with respect to \(x \) when \(x = 2, y = 3 \).
 (d) Find the rate of change of temperature with respect to \(y \) when \(x = 2, y = 3 \).

 Answers:

 (a) \(14 \) degrees/ft
 (b) \(4 \) degrees/ft
 (c) \(20 \) degrees/ft
 (d) \(8 \) degrees/ft

3. Find the equation of the plane tangent to the graph \(z = x^2 + 3y^2 + 4 \) at the point where \(x = 1 \) and \(y = 2 \).
 Answer: \(z = 2x + 12y - 9 \)

4. Recall that the body mass index is given by the formula
 \(B(w,h) = \frac{703w}{h^2} \) The units of \(B \) are kg/m\(^2\) when \(w \) is the weight in pounds and \(h \) is the height in inches.
 (a) Find \(\frac{\partial B}{\partial w} \)
 (b) Find \(\frac{\partial B}{\partial h} \).
 (c) Find the rate of change of the body mass index with respect to \(w \) when \(w = 120 \) pounds and \(h = 65 \) inches.
 (d) Find the rate of change of the body mass index with respect to \(h \) when \(w = 120 \) pounds and \(h = 65 \) inches.

 Answers:

 (a) \(\frac{703}{h^2} \)
 (b) \(-\frac{1406w}{h^3} \)
 (c) \(0.166 \) kg/m\(^2\)/pound
 (d) \(-0.614 \) kg/m\(^2\)/inch

5. Let \(z = \frac{(x-2y)}{(x+y)} \)
 (a) Find \(\frac{\partial z}{\partial x} \).
 (b) Find \(\frac{\partial z}{\partial y} \).
 (c) Find \(\frac{\partial^2 z}{\partial y^2} \)
 (d) Find \(\frac{\partial^2 z}{\partial x^2} \)
 (e) Find the equation of the plane tangent to the graph where \(x = 1 \) and \(y = 1 \).

 Answers:

 (a) \(\frac{3y}{(x+y)^2} \)
 (b) \(-\frac{3x}{(x+y)^2} \)
 (c) \(\frac{6x}{(x+y)^3} \)
 (d) \(-\frac{6y}{(x+y)^3} \)
 (e) \(z = \frac{3}{4}x - \frac{3}{4}y - \frac{1}{2} \)
Math 182 Spring 2007 Homework Sheet H.

1. The height of a wave in the ocean at position x (in feet) and time t (in seconds) is
 \[5 \sin(3x - 10t) \text{ feet}. \]
(a) Tell the height when x = 0 and t = 0.
(b) Tell the rate of change of the height with respect to time.
(c) Tell the rate of change of height with respect to time when x = 0 and t = 0.
(d) Tell the rate of change of the height with respect to position.
(e) Tell the rate of change of height with respect to position when x = 0 and t = 0.
(f) Tell the second derivative of height with respect to time.
(g) Tell the second derivative of height with respect to time when x = 0 and t = 0.

Answers:
(a) 0 feet
(b) \(-50 \cos(3x-10t)\)
(c) \(-50 \text{ feet/sec}\)
(d) \(15 \cos(3x-10t)\)
(e) 15 feet/foot = 15
(f) \(500 \sin(3x-10t)\)
(g) 0 ft/sec²

2. Find the equation of the plane tangent to the graph of \(z = x e^{-y}\) at the point (1,0).
 Answer: \(z = x - y\)

3. Let \(g(x,y) = x e^{2y}\).
 (a) Find \(\frac{\partial g}{\partial x}(1,0)\).
 (b) Find \(\frac{\partial g}{\partial y}(1,0)\).
 (c) Find \(\frac{\partial^2 g}{\partial x^2}(1,0)\).
 (d) Find \(\frac{\partial^2 g}{\partial y^2}(1,0)\).
 (e) Find \(\frac{\partial^2 g}{\partial x \partial y}(1,0)\).

 Answers: (a) 1 (b) 2 (c) 0 (d) 4 (e) 2

4. Let \(g(x,y) = x^2 e^{3y}\).
 (a) Find \(\frac{\partial g}{\partial x}(1,0)\).
 (b) Find \(\frac{\partial g}{\partial y}(1,0)\).
 (c) Find \(\frac{\partial^2 g}{\partial x^2}(1,0)\).
 (d) Find \(\frac{\partial^2 g}{\partial y^2}(1,0)\).
 (e) Find \(\frac{\partial^2 g}{\partial x \partial y}(1,0)\).
 (f) Find \(\frac{\partial g}{\partial y}(2,0)\).
 (g) Find \(\frac{\partial^2 g}{\partial y^2}(2,0)\).

 Answer: (a) 2 (b) 3 (c) 2 (d) 9 (e) 6

5. Let \(g(x,y) = x^2 e^{4xy}\).
 (a) Find \(\frac{\partial g}{\partial x}\).
 (b) Find \(\frac{\partial g}{\partial x}(1,1)\).
 (c) Find \(\frac{\partial g}{\partial y}\).
 (d) Find \(\frac{\partial g}{\partial y}(1,1)\)
 (e) Find \(\frac{\partial^2 g}{\partial x \partial y}\).
 (f) Find \(\frac{\partial^2 g}{\partial x \partial y}(1,1)\).
 (g) Find \(\frac{\partial^2 g}{\partial x^2}\).
 (h) Find \(\frac{\partial^2 g}{\partial x^2}(1,1)\).

 Answer: (a) \(4 x^2 y e^{4xy} + 2 x e^{4xy}\) (b) \(6 e^4\) (c) \(4 x^3 e^{4xy}\) (d) \(4 e^4\)
 (e) \(16 x^3 y e^{4xy} + 12 x^2 e^{4xy}\)
 (f) \(28 e^4\)
 (g) \((16 x^2 y^2 + 16 xy + 2) e^{4xy}\)
 (h) \(34 e^4\)