\[w^{11} - 4w^1 + 2w = 0 \quad w(0) = 0 \quad w'(0) = 1 \]

\[w = e^{rt} \]

\[r^2 e^{rt} - 4r e^{rt} + 2e^{rt} = 0 \]

\[r^2 - 4r + 2 = 0 \]

\[r = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} \]

\[r = 2 \pm \sqrt{2} \]

\[y_1 = e^{(2+\sqrt{2})t}, \quad y_2 = e^{(2-\sqrt{2})t} \]

\[y = C_1 e^{(2+\sqrt{2})t} + C_2 e^{(2-\sqrt{2})t} \]

\[W = \det \begin{pmatrix} e^{(2+\sqrt{2})t} & e^{(2-\sqrt{2})t} \\ (2\sqrt{2})e^{(2+\sqrt{2})t} & (2-\sqrt{2})e^{(2-\sqrt{2})t} \end{pmatrix} \]

\[= e^{(2+\sqrt{2})t}(2-\sqrt{2})e^{(2-\sqrt{2})t} - (2+\sqrt{2})e^{(2+\sqrt{2})t}(2-\sqrt{2})e^{(2-\sqrt{2})t} \]

\[= 2e^{4t} \left[(2-\sqrt{2})^2 - (2+\sqrt{2})^2\right] \]

\[= 2e^{4t} \left[4 - (2\sqrt{2})^2 - (2+\sqrt{2})^2\right] \]

\[= 2e^{4t} \left[4 - 8 - (4 + 4\sqrt{2})\right] \]

\[= 2e^{4t} \left[-4 - 4\sqrt{2}\right] \neq 0 \]
NON HOMOGENEOUS EQUATIONS

\(a y'' + b y' + c y = f(t) \)
WITH \(f(t) \neq 0 \)

IN THIS SECTION, WE LOOK FOR ONE SOLUTION, CALLED A PARTICULAR SOLUTION, \(y_p(t) \).

Example: \(y'' - 4y = e^{3t} \)
FIND A PARTICULAR SOLUTION.

METHOD IS UNDETERMINED COEFFICIENTS (JUDICIOUS GUESSING)

GUESS: \(y_p = A e^{3t} \)
(BECAUSE TO GET \(e^{3t} \), NEED \(e^{3t} \)).

\[
\begin{align*}
 y_p' &= 3A e^{3t} \\
 y_p'' &= 9A e^{3t} \\
 9A e^{3t} - 4A e^{3t} &= e^{3t} \\
 5A e^{3t} &= e^{3t} \\
 5A &= 1 \quad \Rightarrow \quad A = \frac{1}{5}
\end{align*}
\]

\(y_p(t) = \frac{1}{5} e^{3t} \)

Example: \(y'' + 2y' + y = 4t \)

Derivatives are in the form: \(A + B \cdot t \)

\[
\begin{align*}
 y_p' &= A \quad \Rightarrow \quad y_p'' = 0 \\
 0 + 2A + At + B &= 4t \\
 At + (2A + B) &= 4t
\end{align*}
\]

IDENTITY

COEFF OF \(t \) ON LEFT: \(A = 4 \)

CONS ON LEFT: \(2A + B = 0 \)

\(B = -2A \equiv -2(4) = -8 \), \(y_p(t) = 4t - 8 \)
\[y_p' = 4 \]
\[y_p'' = 0 \]
Is \(y'' + 2y' + y = 4t \)?
Is \(0 + 2(4) + (4t - 8) = 4t \)?
\[8 + 4t - 8 = 4t \? \]
\[y_p(t) = 2te^t \]

\[y_p(t) = Ate^t + Be^t \]
\[y_p' = Ate^t + Ate^t + Be^t \]
\[y_p'' = Ate^t + Ate^t + Ate^t + Be^t \]
\[= Ate^t + 2Ate^t + Be^t \]
\[Ate^t + 2Ate^t + Be^t + 2(Ate^t + Ae^t + Be^t) \]
\[= Ate^t + Be^t = 2te^t \]
\[Ate^t + 2Ate^t + Be^t + 2Ate^t + 2Be^t \]
\[= Ate^t + Be^t = 2te^t \]
\[(4A + 4B)e^t \]
\[= 2te^t \]

Coeff. on \(te^t \): \[4A = 2 \]
\[4A + 4B = 0 \]

Coeff. on \(e^t \): \[4 + 4B = 0 \]
\[2 + 4B = 0 \]
\[4B = -2 \]
\[B = -\frac{1}{2} \]

\[y_p(t) = \frac{1}{2} te^t - \frac{1}{2} te^t \]
PRELIMINARY INCOMPLETE SUMMARY

To find a particular solution of

\[ay'' + by' + cy = C t^m e^{rt} \]

guess

\[y_p = \left(A t^m + A_{m-1} t^{m-1} + \cdots + A_0 t + A_0 \right) e^{rt} \]

Example form of the guess for

\[y'' + 2y' + y = 4t^3 e^{2t} \]

\[y_p = A t^3 e^{2t} + B t^2 e^{2t} + C t e^{2t} + D e^{2t} \]

\[y'' - 4y = e^{2t} \]

So far

\[y_p = A e^{2t} \]

\[y''' = 2A e^{2t} \]

\[y^{(4)} = 4A e^{2t} \]

\[4A e^{2t} - 4A e^{2t} = e^{2t} \]

\[0 = e^{2t} \]

Example:

\[y = e^{2t} \text{ solution of } y'' - 4y = 0 \]

\[y'' - 4y = 0 \text{ has solution } \pm 2 \]

\[y = C_1 e^{2t} + C_2 e^{-2t} \]

So instead

\[y_p(t) = A t e^{2t} \]

\[y_p' = 2A t e^{2t} + A e^{2t} \]

\[y_p'' = (2t+6)e^{2t} + 2A e^{2t} + 2A e^{2t} \]

\[4A e^{2t} + 4A e^{2t} - 4A e^{2t} = e^{2t} \]

\[4A e^{2t} = e^{2t} \]

\[e^{2t} = 4A \]

\[A = \frac{1}{4} \]

\[y_p(t) = \frac{1}{4} t e^{2t} \]

There was overlap of \(f(t) \) with solution of

\[ay'' + by' + cy = 0 \]
COMPLETE RULE
TO FIND PARTICULAR SOLUTION FOR
\(ay'' + by' + cy = Ce^rt \)

MAKE A GUESS
\(y_p = t^s(A_1t^{r_1} + A_2t^{r_2} + \ldots + A_{n-r}t^{r_{n-r}} + A_{n-r+1} + A_{n-r+2} + \ldots + A_n)e^{rt} \)

WHERE S = 0 if \(e^{rt} \) is not a solution to \(ay'' + by' + cy = 0 \) simple
S = 1 if \(e^{rt} \) is a root of the auxiliary equation for \(ay'' + by' + cy = 0 \)
S = 2 if \(e^{rt} \) is a double root of the auxiliary equation for \(ay'' + by' + cy = 0 \).

FORM OF GUESS
\(y'' - 2y' + y = 2te^t \)

HOMOGENEOUS
\(y'' - 2y' + y = 0 \)
\(r^2 - 2r + 1 = 0 \)
\((r-1)^2 = 0 \) \(r = 1 \) is a double root

\(y_p = t^s(A_1t + B_1)et \)
S = 2
r = 1 is a double root

\(y_p = At^3e^t + Bt^2e^t \)
\((r-1)(r+3) > 0 \)
\(c_1e^t + c_2e^{3t} \)
S = 1