CHAPTER 4
SECOND-ORDER LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

\[y'' - 3y' + 4y = 0 \]

Homogeneous

2nd ORDER

\[y = f(t) \]

This has form \(ay'' + by' + cy = g(t) \)

Constant coefficients if \(a, b, c \)

are constants

It is homogeneous if \(g(t) = 0 \)

Compare

\[y'' - 3y' + 4y = \sin t \]

Not homogeneous

SOLVING 2nd ORDER, HOMOGENEOUS EQUATIONS

STEP 1: TO SOLVE \(ay'' + by' + cy = 0 \)

MAKE THE GUESS \(y = e^{rt} \)

AND FIND \(r \).

EX:

\[y'' - 5y' + 6y = 0 \]

\[y = e^{rt} \]

\[y' = re^{rt} \]

\[y'' = r^2e^{rt} \]

\[y'' - 5y' + 6y = r^2e^{rt} - 5re^{rt} + 6e^{rt} = 0 \]

\[e^{rt}(r^2 - 5r + 6) = 0 \]

\[r^2 - 5r + 6 = 0 \]

\[r^2 = 0 \] or \[r^2 - 5r + 6 = 0 \]

NEVER

AUXILIARY OR CHARACTERISTIC EQUATION
\[(r - 3)(r - 2) = 0\]
\[r - 3 = 0 \quad \text{or} \quad r - 2 = 0\]
\[r = 3 \quad \text{or} \quad r = 2\]

The solutions of form \(y = e^{rt}\) are

\[y_1(t) = e^{3t} \quad \text{and} \quad y_2(t) = e^{2t}\]

Step 2: Use Principle of Superposition

Theorem Suppose consider homogeneous equation \(ay'' + by' + cy = 0\).

Suppose \(y_1(t)\) and \(y_2(t)\) are solutions.

Then the "linear combination"

\[y = c_1 y_1(t) + c_2 y_2(t)\]

is also a solution.

In our example, \(y_1 = e^{3t}\) and \(y_2 = e^{2t}\)
are solutions. Hence by superposition

\[y = c_1 e^{3t} + c_2 e^{2t}\]

is a solution.

This is the general solution.

Ex 2: Find the general solution to

\[y'' - 9y = 0\]

Solu:

Guess \(y = e^{rt}\), \(y' = re^{rt}\), \(y'' = r^2 e^{rt}\)

\[r^2 e^{rt} - 9e^{rt} = 0\]

\[e^{rt}(r^2 - 9) = 0\]

\[r^2 - 9 = 0\]

\[r = \pm 3\]

Solutions \(y_1 = e^{3t}\) and \(y_2 = e^{-3t}\)

\[y = c_1 e^{3t} + c_2 e^{-3t}\]

is the general solution.
(b) Find the solution to
\[y'' - 9y = 0, \quad y(0) = 6, \quad y'(0) = -6. \]

Initial conditions

General solution \(y(t) = c_1 e^{3t} + c_2 e^{-3t} \)

\(y(0) = 6 \) \(\Rightarrow \) \(c_1 = c_1 (1) + c_2 \)

\(y'(t) = 3c_1 e^{3t} - 3c_2 e^{-3t} \)

\(y'(0) = -6 \) \(\Rightarrow \) \(-6 = 3c_1 - 3c_2 \)

Solve \(\begin{cases} c_1 + c_2 = 6 \\ 3c_1 - 3c_2 = -6 \end{cases} \)

\(c_2 = 6 - c_1 \)

\(3c_1 - 3(6 - c_1) = -6 \)

\(3c_1 - 18 + 3c_1 = -6 \)

\(6c_1 = -6 + 18 = 12 \)

\(c_1 = 2 \)

\(c_2 = 6 - 2 = 4 \)

Answer \(y = 2e^{3t} + 4e^{-3t} \)

Example Solution \(y'' + y' - 2y = 0 \)

\(y = c_1 e^t + c_2 e^{-2t} \)

or \(y = c_1 e^{-2t} + c_2 e^t \)

or \(y = k_1 e^t + k_2 e^{-2t} \)
Ex. \(y'' + 2y' + y = 0 \)

Let \(y = e^{rt} \), \(y' = re^{rt} \), \(y'' = r^2e^{rt} \)

\[r^2e^{rt} + 2re^{rt} + e^{rt} = 0 \]

\[e^{rt}(r^2 + 2r + 1) = 0 \]

\[r^2 + 2r + 1 = 0 \]

\[(r + 1)^2 = 0 \]

\[r + 1 = 0 \text{ twice} \]

\[r = -1 \text{ twice} \]

\[y_1 = e^{-t} \]

In fact, \(y = te^{-t} \) is also a solution.

\[y' = e^{-t} - te^{-t} \]

\[y'' = -(t(-e^{-t} + e^{-t}) - e^{-t} = te^{-t} - e^{-t} - e^{-t} = te^{-t} - 2e^{-t} \]

Is \(y'' + 2y' + y = 0 \) ?

Is \(te^{-t} - 2e^{-t} + 2(-te^{-t} + e^{-t}) + te^{-t} = 0 \) ?

Is \(te^{-t} - 2e^{-t} - 2te^{-t} + 2e^{-t} + te^{-t} = 0 \) ?

Yes, \(y_2 = te^{-t} \) is also a solution.

General solution:

\[y = c_1 e^{-t} + c_2 te^{-t} \]

Theorem: Suppose the characteristic equation of \(ay'' + by' + cy = 0 \) has a double root \(r \).

Then the general solution is

\[y = c_1 e^{rt} + c_2 te^{rt} \]
SOLVE

\[y'' - 4y' + 4y = 0 \]

Ans \[y = c_1 e^{2t} + c_2 te^{2t} \]

SOLVE \[y'' - 4y' + 4y = 0 \]

1. \[y(0) = 1 \], \[y'(0) = 5 \]
2. \[y = c_1 e^{2t} + c_2 te^{2t} \]
3. \[y' = 2c_1 e^{2t} + c_2 e^{2t} + c_2 te^{2t} \]
4. \[y(0) = 1 \] so \[c_1 + 0 = 1 \]
5. \[y'(0) = 5 \] so \[2c_1 + c_2 + 0 = 5 \]
6. \[c_1 = 1 \]
7. \[2c_1 + c_2 = 5 \]
8. \[2 + c_2 = 5 \]
9. \[c_2 = 3 \]

\[y = e^{2t} + 3te^{2t} \]