Iterated Function Systems

Section 1. Iterated Function Systems

Definition. A transformation $f: \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a contraction (or is a contraction mapping or is contractive) if there is a constant s with $0 \leq s < 1$ such that

$$|f(x) - f(y)| \leq s|x-y|$$

for all x and y in \mathbb{R}^m. We call any such number s a contractivity factor for f. The smallest s that works is called the best contractivity factor for f.

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = 0.9x + 2$. Then f is a contraction mapping because

$$|f(x) - f(y)| = |0.9x - 0.9y| = 0.9|x-y|.$$ We may thus choose $s = 0.9$. [For that matter we could also choose $s = 0.95$ but not $s = 1.05$ or $s = 0.85$. We generally pick the smallest possible choice for s, which is 0.9 in this example. Thus $s = 0.95$ would not get full credit.]

Lemma. Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a similarity, $f(x) = r x + t$ with $r > 0$. This combines a rescaling by r with a translation by the vector $t = (t_1, t_2)$. Then f is a contraction provided $r < 1$. When this occurs, the best contractivity factor is r.

Proof. \[|f(x) - f(y)| = |r x + t - (r y + t)| = |r x - r y| = r |x - y|.\] QED

This gives lots of examples of contractions on \mathbb{R}^2.

Theorem. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable everywhere and $|f'(x)| \leq s < 1$ for all $x \in \mathbb{R}$. Then f is a contraction with contractivity factor s.

Example. $f(x) = 0.5 \cos x$ is a contraction on \mathbb{R}.

Proof. By the Mean Value Theorem,

$$|f(x) - f(y)| / |x-y| = |f'(c)| \leq s$$

for some c between x and y. But then

$$|f(x) - f(y)| \leq s |x-y|.$$ QED

Definition. An iterated function system (IFS) is a set of continuous maps

$$w_1: \mathbb{R}^m \rightarrow \mathbb{R}^m, w_2: \mathbb{R}^m \rightarrow \mathbb{R}^m, ..., w_N: \mathbb{R}^m \rightarrow \mathbb{R}^m$$
together with a set of positive numbers $p_1, ..., p_N$ which add up to 1 (interpreted as probabilities). .

The IFS is hyperbolic if each w_i is a contraction map with contractivity factor s_i. Let $s = \max \{s_1, s_2, ..., s_N\}$.

Example. On \mathbb{R}, $w_1(x) = (1/3)x$, $w_2(x) = (1/3)x + (2/3)$. Let $p_1 = 1/2$, $p_2 = 1/2$. This is a hyperbolic IFS.

Def. Given an IFS, let $H(\mathbb{R}^m)$ be the collection of compact nonempty subsets of \mathbb{R}^m. More explicitly, these are the subsets of \mathbb{R}^m which are bounded, closed, and nonempty. We define the set transformation

$$W: H(\mathbb{R}^m) \rightarrow H(\mathbb{R}^m)$$

by $W(B) = w_1(B) \cup w_2(B) \cup ... \cup w_N(B)$.

We say that the contractivity factor of W is $s = \max \{s_1, s_2, ..., s_N\}$.

Example. On \mathbb{R}, $w_1(x) = (1/3)x$, $w_2(x) = (1/3)x + (2/3)$. Let $p_1 = 1/2$, $p_2 = 1/2$. Then $W(B) = w_1(B) \cup w_2(B)$ has contractivity factor $(1/3)$.

Definition. If $A \in H(R^m)$ is fixed under W (i.e., $W(A) = A$) for a hyperbolic IFS then A is called the attractor of the IFS.

Example. On R, $w_1(x) = (1/3)x$, $w_2(x) = (1/3)x + (2/3)$. The attractor is the Cantor set C, since $W(C) = C$.

Typically the attractor is a fractal.

Contraction Mapping Theorem. Let $w_1, ..., w_N$ be a hyperbolic IFS on R^m with contractivity factor s. Then the IFS possesses exactly one attractor A. Suppose B consists of a fixed point p of some w_i (i.e., $B = \{p\}$). Then A consists of all the limits of all converging sequences $x_0, x_1, x_2, ...$ such that for all i, x_i lies in $W_i(B)$.

In fact, if B is any member of $H(R^m)$ then the sequence $\{W^n(B)\}$ converges to A. [The definition of what it means for a sequence of sets to converge to a set is complicated.]

Section 2. Drawing the attractor of an IFS

METHOD 1: THE "DETERMINISTIC ALGORITHM"

Suppose we are given a hyperbolic IFS with set transformation W. Choose an input drawing B. Draw B, $W(B)$, $W^2(B)$, $W^n(B)$ until you are satisfied.

See the applet http://classes.yale.edu/fractals/software/detifs.html on the course web page, listed as "Deterministed Iterated Function Systems".

This is based on the formulas for the Sierpinski triangle:

Let $w_1(x) = (1/2)x$, $w_2(x) = (1/2)x + (0,1/2)$, $w_3(x) = (1/2)x + (1/2,0)$. Then W has contractivity factor $1/2$. The attractor A satisfies $W(A) = A$ and the successive pictures converge to A.

By choosing the squiggle on the left, we can draw a different input drawing. Then hit the play arrow to draw the resulting figures $W^n(B)$. The use of the small arrow performs just one step.

Rather than an arbitrary input drawing B, it is useful to choose any fixed point p of some w_i. Let $A_0 = \{p\} \in H(R^2)$. Draw A_0. Draw $A_1 = W(A_0)$. Draw $A_2 = W(A_1)$. In general, we let $A_{j+1} = W(A_j)$ and we draw A_j's until we are satisfied.

Example. Consider again the Cantor set example. Let $w_1(x) = (1/3)x$, $w_2(x) = (1/3)x + (2/3)$. Choose $B = \{0\}$ and consider $W^n(B)$.

$B = \{0\} \quad W(B) = \{0, 2/3\} \quad W^2(B) = \{0, 2/9, 2/3, 8/9\} \quad W^3(B) = \{0, 2/27, 6/27, 18/27, 20/27, 24/27, 26/27\}$.

In practice this means that there is a finite set A_0 corresponding to pixels that are darkened. We draw A_0. For example, if A_0 consists of a single point p, then $A_0 = \{p\}$, $A_1 = \{w_1(p), ..., w_N(p)\}$, $A_2 = \{w_1(w_1(p))\}$. In practice you make a linked list of the points to be drawn. This does not use the probabilities.
Why does this work?

Lemma. A fixed point \(p \) of \(w_1 \) lies in \(A \).

Proof. Let \(B = \{ p \} \).
Then \(x_0 = p \in B \)
\(x_1 = w_1(p) = p \in W(B) \)
\(x_2 = w_1(x_1) = p \in W^2(B) \)

Thus the sequence \(x_i = p \) satisfies that \(x_i \in W^i(B) \), whence \(p \) is a limit point.
Hence \(p \in A \).

QED

Cor. For each \(n \), \(W^n(B) \subseteq A \).

Proof.
(1) For each \(i \), \(w_i(p) \in w_i(A) \subseteq W(A) = A \). Hence \(W(B) \subseteq A \).
(2) Each point of \(W^2(B) \) has the form \(w_i(q) \) for \(q \in W(B) \). But \(q \in A \). Hence \(w_i(q) \in w_i(A) \subseteq W(A) = A \). Hence \(W^2(B) \subseteq A \).
(3) The general case follows by induction.

QED

By the Contraction Mapping Theorem, \(A \) is the set of limit points from \(\bigcup W^n(B) \). On the computer you can't distinguish limit points. Hence the method draws a picture indistinguishable on the computer from \(A \).

Method 1 leads to lots of redundancy since the same calculations are performed lots of times.

METHOD 2: THE "RANDOM ITERATION METHOD"

Give each map \(w_i \) a probability \(p_i \) with \(0 < p_i < 1 \) but \(\sum p_i = 1 \). Let \(x_0 \) be a point in \(A \) (for example, the fixed point of \(w_1 \)). Draw \(x_0 \). Pick a map \(w_i \) at random (so \(w_i \) is chosen with probability \(p_i \)). Let \(x_1 = w_i(x_0) \) and draw \(x_1 \). Pick a map \(w_j \) at random and let \(x_2 = w_j(x_1) \); draw \(x_2 \). Repeat this.

This goes very fast. You don't need to draw many extraneous points. You don't have the overhead of keeping a long linked list.

Use the Applet http://classes.yale.edu/fractals/software/randomifs.html
\(w_1(x,y) = .5(x,y) \)
\(w_2(x,y) = .5(x,y) + (0.5, 0) \)
\(w_3(x,y) = .5(x,y) + (0.5) \)

For the Sierpinski triangle, we get good results if \(p_1 = 0.33, p_2 = 0.33, p_3 = 0.34 \).

Note the weird results, however, if \(p_1 = 0.66, p_2 = 0.30, p_3 = 0.04 \). This means that the second and third maps are rarely used, so the detail doesn't fill in. Since \(p_3 \) is small, it is rare that we draw points in \(W^3(A) \).

Frequently one sees the description to let \(x_0 \) be any point (not necessarily a point of \(A \)); but then one gets the additional complication of omitting the first few (maybe 10) points from the drawing since they will not be in \(A \). (After a while, the points will be so close to \(A \) that it will not matter for the picture whether the point was actually in \(A \); telling how many iterates to wait may be a bit complicated sometimes.)

Example. Consider again the Cantor set example. Let \(w_1(x) = (1/3)x \), \(w_2(x) = (1/3)x + (2/3) \). Let \(p_1 = 1/2, p_2 = 1/2 \).
Suppose instead we start with 0. Repeatedly flip a coin, and use w_1 if Heads, w_2 if Tails. The points we obtain are all in A and can get close to each point in A.

Why does the method work?

Lemma. Each x_i lies in A.
Proof. $x_0 \in A$ by definition.
$x_1 = w_j(x_0)$ for some j, hence lies in $W(A) = A$, hence $x_1 \in A$.
$x_2 = w_j(x_1)$ for some j, hence lies in $W(A) = A$, hence $x_2 \in A$.
etc.
QED

The convergence is a matter of probability (true only with high probability), but in any event every point drawn is in A.

Rule of Thumb for choosing the probabilities p_i: Make p_i proportional to the estimated area of $w_i(A)$. Thus for the Sierpinski triangle, the 3 pieces $w_i(A)$ should be the same size, so they should have the same probabilities. Hence $p_i = 1/3$.

Section 3. The Collage Theorem.

There remains the important problem, given a proposed attractor A, of finding an IFS that has A as its attractor. This is accomplished by the Collage Theorem:

Let $B \in H(\mathbb{R}^m)$. Let $\varepsilon > 0$.

$B + \varepsilon = \{ x \in \mathbb{R}^m : \text{there exists } b \in B \text{ with } |x - b| < \varepsilon \} = B$ fattened by ε

Example. $B =$ line segment
Example. $B =$ edge of a square

Collage Theorem.

Let $L \in H(\mathbb{R}^m)$. [This is what you hope to be the attractor.]

Let $\varepsilon \geq 0$ be given. [This is the allowed resolution.]

Suppose [by hook or crook] there is an IFS $w_1, w_2, ..., w_N$ with contractivity factor s, $0 < s < 1$, such that

$W(L) \subseteq (L + \varepsilon)$
$L \subseteq (W(L) + \varepsilon)$

Then the attractor A of the IFS satisfies:

1. $A \subseteq (L + \varepsilon/(1-s))$
2. $L \subseteq (A + \varepsilon/(1-s))$

Hence, if ε is small, A looks very much like L; A is contained in a fattened version of L and L is contained in a fattened version of A.

Example 1. Let L be the Sierpinski triangle. (Use overhead.) Let $w_1(x) = (1/2)x$, $w_2(x) = (1/2)x + (0,1/2)$, $w_3(x) = (1/2)x + (1/2,1/2)$. Then $A = L$.

Example 2. Let L be the Sierpinski gasket. (Use overhead.) Let $w_1(x) = (1/2)x$, $w_2(x) = (1/2)x + (0,1/2)$, $w_3(x) = (1/2)x + (1/2,1/2)$. Then $A = L$.

Example.
Tell the maps for a hyperbolic IFS that draws the fractal below. Assume the bottom is [0,1].

Answer:
w1(x) = (1/3) x
w2(x) = (1/3)x + (1/3,0)
w3(x) = (1/3)x + (2/3,0)
w4(x) = (1/3) x + (0, 1/3)
w5(x) = (1/3)x + (0, 2/3)

Section 4. Transformations on \(\mathbb{R}^2 \)

Some types of transformations are used so much that they have names.

A map \(w: \mathbb{R}^m \to \mathbb{R}^m \) by \(w(x) = x + t \) where \(t \) is a fixed vector. The effect of \(w \) is to move the vector over by \(t \). We say \(w \) translates by \(t \).

A map \(w: \mathbb{R}^m \to \mathbb{R}^m \) by \(w(x) = r x \) rescales by the scale factor \(r \).

A map \(w: \mathbb{R}^m \to \mathbb{R}^m \) by \(w(x) = rx + t \) first rescales, then translates by \(t \).

A map \(w: \mathbb{R}^2 \to \mathbb{R}^2 \) by \(w(x_1,x_2) = (x_1, -x_2) \). We say that \(w \) reflects in the \(x_1 \) axis. We can rewrite \(w \) using matrices: Let \(R \) denote the matrix corresponding to reflection in the \(x_1 \) axis:

\[
R = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]
Then $w(x) = R x$ using matrix multiplication.

A map $w: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$w(x) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x = R_\theta x$$

w corresponds to counterclockwise rotation about the origin by the angle θ. Here R_θ denotes the matrix

$$R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Ex. Rotate by 45 degrees. Show the unit square so rotated.

Ex. To rotate clockwise 45 degrees, instead you rotate counterclockwise by -45 degrees.

A similitude on \mathbb{R}^2 is a transformation $w: \mathbb{R}^2 \to \mathbb{R}^2$ that has either of the forms:

$$w(x) = r R_\theta (x) + v$$

or

$$w(x) = r R_\theta R (x) + v$$

where we shall insist that the constant r satisfies $r > 0$.

These formulas translate explicitly into the matrix forms:

$$w(x) = \begin{bmatrix} r \cos \theta & -r \sin \theta \\ r \sin \theta & r \cos \theta \end{bmatrix} x + e$$

or

$$w(x) = \begin{bmatrix} r \cos \theta & r \sin \theta \\ r \sin \theta & -r \cos \theta \end{bmatrix} x + e$$

In the first, this says take x, rotate by θ, then rescale by r, then translate by v. The second says take x, reflect in the x axis, rotate by θ, rescale by r, then finally translate by v.

Example. Find the formula for the similitude that first rotates 45 degrees and then translates by $(1,2)^T$.

Solution. $f(x) = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} x$

and $g(x) = x + (1,2)$. Hence what we want is $g(f(x))$

$$= \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} x + [1]$$

$$\begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} [2]$$